OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 5 — Mar. 10, 2014
  • pp: 5995–6008

Wavefront analysis of high-efficiency, large-scale, thin transmission gratings

Chun Zhou, Takashi Seki, Tsuyoshi Kitamura, Yoshiyuki Kuramoto, Takashi Sukegawa, Nobuhisa Ishii, Teruto Kanai, Jiro Itatani, Yohei Kobayashi, and Shuntaro Watanabe  »View Author Affiliations

Optics Express, Vol. 22, Issue 5, pp. 5995-6008 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2795 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Large-scale (180 × 60 × 1 mm3) transmission gratings with groove densities of 1250 and 1740 lines/mm have been developed, resulting in diffraction efficiencies above 95%. The throughput of a folded pulse compressor with two large-scale transmission gratings was approximately 80% in a 20-fs Ti:sapphire chirped-pulse amplification (CPA) laser. The parabolic bending of the transmission grating due to anti-reflection (AR) coating was minimized to 2.9 λ at 633 nm by improving the evaporation process. By a simple analysis, we explain why this level of bending does not induce a wavefront distortion through the transmission grating near the Littrow condition while the wavefront from a reflection grating is distorted to nearly twice the bending of the grating. The calculation based on the measured bending shows that both the group delay difference relative to the ideally flat grating from 750 to 850 nm and the spatial pulse front distortion over a 60-mm-diameter input beam are negligible, even when the dispersive beam covers ~140 mm on the grating. The spatial pulse front distortion measured after the compressor was less than the measurement limit (1.5 fs) for a 20-mm-diameter beam, where the beam size in the dispersive direction on the grating was 85 mm.

© 2014 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Diffraction and Gratings

Original Manuscript: January 20, 2014
Revised Manuscript: February 24, 2014
Manuscript Accepted: February 26, 2014
Published: March 6, 2014

Chun Zhou, Takashi Seki, Tsuyoshi Kitamura, Yoshiyuki Kuramoto, Takashi Sukegawa, Nobuhisa Ishii, Teruto Kanai, Jiro Itatani, Yohei Kobayashi, and Shuntaro Watanabe, "Wavefront analysis of high-efficiency, large-scale, thin transmission gratings," Opt. Express 22, 5995-6008 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Krausz, M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009). [CrossRef]
  2. R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, F. Krausz, “Atomic transient recorder,” Nature 427(6977), 817–821 (2004). [CrossRef] [PubMed]
  3. T. Sekikawa, A. Kosuge, T. Kanai, S. Watanabe, “Nonlinear optics in the extreme ultraviolet,” Nature 432(7017), 605–608 (2004). [CrossRef] [PubMed]
  4. G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314(5798), 443–446 (2006). [CrossRef] [PubMed]
  5. Y. Nabekawa, Y. Kuramoto, T. Togashi, T. Sekikawa, S. Watanabe, “Generation of 0.66-TW pulses at 1 kHz by a Ti:sapphire laser,” Opt. Lett. 23(17), 1384–1386 (1998). [CrossRef] [PubMed]
  6. S. Backus, R. Bartels, S. Thompson, R. Dollinger, H. C. Kapteyn, M. M. Murnane, “High-efficiency, single-stage 7-kHz high-average-power ultrafast laser system,” Opt. Lett. 26(7), 465–467 (2001). [CrossRef] [PubMed]
  7. http://www.horiba.com/fr/scientific/products/gratings/
  8. S. Backus, C. G. Durfee, G. Mourou, H. C. Kapteyn, M. M. Murnane, “0.2-TW laser system at 1kHz,” Opt. Lett. 22(16), 1256–1258 (1997). [CrossRef] [PubMed]
  9. Y. Nabekawa, T. Togashi, T. Sekikawa, S. Watanabe, S. Konno, T. Kojima, S. Fujikawa, K. Yasui, “All-solid-state high-peak-power Ti:sapphire laser system above 5-kHz repetition rate,” Appl. Phys. B 70(S1), S171–S179 (2000). [CrossRef]
  10. E. Gubbini, G. Kommol, M. Schnürer, H. Schönnagel, U. Eichmann, M. P. Kalashnikov, P. V. Nickles, F. Eggenstein, G. Reichardt, W. Sandner, “’On-line’ cleaning of optical components in a multi TW-Ti:Sa laser system,” Vacuum 76(1), 45–49 (2004). [CrossRef]
  11. M. D. Perry, R. D. Boyd, J. A. Britten, D. Decker, B. W. Shore, C. Shannon, E. Shults, “High-efficiency multilayer dielectric diffraction gratings,” Opt. Lett. 20(8), 940–942 (1995). [CrossRef] [PubMed]
  12. K. Hehl, J. Bischoff, U. Mohaupt, M. Palme, B. Schnabel, L. Wenke, R. Bödefeld, W. Theobald, E. Welsch, R. Sauerbrey, H. Heyer, “High-efficiency dielectric reflection gratings: design, fabrication, and analysis,” Appl. Opt. 38(30), 6257–6271 (1999). [CrossRef] [PubMed]
  13. J. A. Britten, I. Jovanovic, W. A. Molander, M. D. Aasen, C. G. Brown, T. C. Carlson, C. R. Hoaglan, L. M. Jones II, H. T. Nguyen, J. D. Nissen, B. C. Stuart, L. J. Summers, and C. P. Barty, “Advanced dielectric grating technology for high-energy petawatt lasers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper JFB5. [CrossRef]
  14. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35(2), 94–96 (2010). [CrossRef] [PubMed]
  15. T. Clausnitzer, T. Kämpfe, E.-B. Kley, A. Tünnermann, A. V. Tishchenko, O. Parriaux, “Highly-dispersive dielectric transmission gratings with 100% diffraction efficiency,” Opt. Express 16(8), 5577–5584 (2008). [CrossRef] [PubMed]
  16. A. Ruehl, A. Marcinkevicius, M. E. Fermann, I. Hartl, “80 W, 120 fs Yb-fiber frequency comb,” Opt. Lett. 35(18), 3015–3017 (2010). [CrossRef] [PubMed]
  17. F. Röser, J. Rothhard, B. Ortac, A. Liem, O. Schmidt, T. Schreiber, J. Limpert, A. Tünnermann, “131 W 220 fs fiber laser system,” Opt. Lett. 30(20), 2754–2756 (2005). [CrossRef] [PubMed]
  18. Y. Zaouter, J. Boullet, E. Mottay, E. Cormier, “Transform-limited 100 microJ, 340 MW pulses from a nonlinear-fiber chirped-pulse amplifier using a mismatched grating stretcher-compressor,” Opt. Lett. 33(13), 1527–1529 (2008). [CrossRef] [PubMed]
  19. D. Yoshitomi, X. Zhou, Y. Kobayashi, H. Takada, K. Torizuka, “Long-term stable passive synchronization of 50 µJ femtosecond Yb-doped fiber chirped-pulse amplifier with a mode-locked Ti:sapphire laser,” Opt. Express 18(25), 26027–26036 (2010). [CrossRef] [PubMed]
  20. Y. Kobayashi, N. Hirayama, A. Ozawa, T. Sukegawa, T. Seki, Y. Kuramoto, S. Watanabe, “10-MHz, Yb-fiber chirped-pulse amplifier system with large-scale transmission gratings,” Opt. Express 21(10), 12865–12873 (2013). [CrossRef] [PubMed]
  21. C. Zhou, T. Seki, T. Sukegawa, T. Kanai, J. Itatani, Y. Kobayashi, S. Watanabe, “Large-scale, high-efficiency transmission grating for terawatt-class Ti:sapphire lasers at 1 kHz,” Appl. Phys. Express 4(7), 072701 (2011). [CrossRef]
  22. R. W. Hoffman, “The mechanical properties of thin condensed films,” Phys. Thin Films 3, 211–270 (1966).
  23. S. Szatmári, G. Kühnle, “Pulse front and pulse duration distortion in refractive optics, and its compensation,” Opt. Commun. 69(1), 60–65 (1988). [CrossRef]
  24. T. Kanai, X. Zhou, T. Liu, A. Kosuge, T. Sekikawa, S. Watanabe, “Generation of terawatt 10-fs blue pulses by compensation for pulse-front distortion in broadband frequency doubling,” Opt. Lett. 29(24), 2929–2931 (2004). [CrossRef] [PubMed]
  25. M. Endo, A. Ozawa, T. Sukegawa, and Y. Kobayashi, “5.2-GHz, Kerr-lens mode-locked Yb:Lu2O3 ceramic laser for comb-resolved broadband spectroscopy,” in CLEO:2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTu1I.3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited