OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 5 — Mar. 10, 2014
  • pp: 6060–6077

SESAM modelocked Yb:CaGdAlO4 laser in the soliton modelocking regime with positive intracavity dispersion

C. R. Phillips, A. S. Mayer, A. Klenner, and U. Keller  »View Author Affiliations


Optics Express, Vol. 22, Issue 5, pp. 6060-6077 (2014)
http://dx.doi.org/10.1364/OE.22.006060


View Full Text Article

Enhanced HTML    Acrobat PDF (1588 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate femtosecond SESAM modelocking in the near-infrared by using cascaded quadratic nonlinearities (phase-mismatched second-harmonic generation, SHG), enabling soliton modelocking in the normal dispersion regime without any dispersion compensating elements. To obtain large and negative self-phase modulation (SPM) we use an intracavity LBO crystal, whose temperature and angles are optimized with respect to SPM, nonlinear losses, and self-starting characteristics. To support femtosecond pulses, we use the very promising Yb:CaGdAlO4 (CALGO) gain material, operated in a bulk configuration. The LBO crystal provides sufficient negative SPM to compensate for its own GDD as well as the positive GDD and SPM from the gain crystal. The modelocked laser produces pulses of 114 fs at 1050 nm, with a repetition rate of 113 MHz (average output power 1.1 W). We perform a detailed theoretical study of this soliton modelocking regime with positive GDD, which clearly indicates the important design constraints in an intuitive and systematic way. In particular, due to its importance in avoiding multi-pulsed modelocking, we examine the nonlinear loss associated with the cascading process carefully and show how it can be suppressed in practice. With this modelocking regime, it should be possible to overcome the limits faced by current state of the art modelocked lasers in terms of dispersion compensation and nonlinearity management at high powers, suppression of Q-switching in compact GHz lasers, and enabling femtosecond soliton modelocking at very high repetition rates due to the high nonlinearities accessible via cascading combined with eliminating the need for intracavity dispersion compensation.

© 2014 Optical Society of America

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.7090) Lasers and laser optics : Ultrafast lasers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

ToC Category:
Ultrafast Optics

History
Original Manuscript: January 27, 2014
Manuscript Accepted: February 25, 2014
Published: March 6, 2014

Citation
C. R. Phillips, A. S. Mayer, A. Klenner, and U. Keller, "SESAM modelocked Yb:CaGdAlO4 laser in the soliton modelocking regime with positive intracavity dispersion," Opt. Express 22, 6060-6077 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-5-6060


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. F. Mollenauer, R. H. Stolen, “The soliton laser,” Opt. Lett. 9, 13–15 (1984). [CrossRef] [PubMed]
  2. U. Keller, K. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Hönninger, N. Matuschek, J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” Selected Topics in Quantum Electronics, IEEE Journal of 2, 435–453 (1996). [CrossRef]
  3. F. X. Kärtner, U. Keller, “Stabilization of solitonlike pulses with a slow saturable absorber,” Opt. Lett. 20, 16–18 (1995). [CrossRef] [PubMed]
  4. F. X. Kärtner, I. Jung, U. Keller, “Soliton mode-locking with saturable absorbers,” Selected Topics in Quantum Electronics, IEEE Journal of 2, 540–556 (1996). [CrossRef]
  5. U. Keller, “Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight,” Applied Physics B 100, 15–28 (2010). [CrossRef]
  6. F. X. Kärtner, D. Kopf, U. Keller, “Solitary-pulse stabilization and shortening in actively mode-locked lasers,” J. Opt. Soc. Am. B 12, 486–496 (1995). [CrossRef]
  7. I. D. Jung, F. X. Kärtner, L. R. Brovelli, M. Kamp, U. Keller, “Experimental verification of soliton mode locking using only a slow saturable absorber,” Opt. Lett. 20, 1892–1894 (1995). [CrossRef] [PubMed]
  8. C. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O. Heckl, C. Baer, M. Golling, T. Südmeyer, U. Keller, “SESAMs for high-power oscillators: Design guidelines and damage thresholds,” Selected Topics in Quantum Electronics, IEEE Journal of 18, 29–41 (2012). [CrossRef]
  9. R. Paschotta, R. Hring, A. Garnache, S. Hoogland, A. Tropper, U. Keller, “Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Applied Physics B 75, 445–451 (2002). [CrossRef]
  10. M. Hoffmann, O. D. Sieber, D. J. H. C. Maas, V. J. Wittwer, M. Golling, T. Südmeyer, U. Keller, “Experimental verification of soliton-like pulse-shaping mechanisms in passively mode-locked VECSELs,” Opt. Express 18, 10143–10153 (2010). [CrossRef] [PubMed]
  11. R. Schiek, “Nonlinear refraction caused by cascaded second-order nonlinearity in optical waveguide structures,” J. Opt. Soc. Am. B 10, 1848–1855 (1993). [CrossRef]
  12. G. I. Stegeman, D. J. Hagan, L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Optical and Quantum Electronics 28, 1691–1740 (1996). [CrossRef]
  13. D. Bauer, I. Zawischa, D. H. Sutter, A. Killi, T. Dekorsy, “Mode-locked Yb:YAG thin-disk oscillator with 41 μJ pulse energy at 145 W average infrared power and high power frequency conversion,” Opt. Express 20, 9698–9704 (2012). [CrossRef] [PubMed]
  14. C. J. Saraceno, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, U. Keller, “275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment,” Opt. Express 20, 23535–23541 (2012). [CrossRef] [PubMed]
  15. C. J. Saraceno, F. Emaury, C. Schriber, M. Hoffmann, M. Golling, T. Südmeyer, U. Keller, “Ultrafast thin-disk laser with 80 μJ pulse energy and 242 W of average power,” Opt. Lett. 39, 9–12 (2014). [CrossRef]
  16. T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevičius, M. E. Fermann, J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nature Photonics 2, 355–359 (2008). [CrossRef]
  17. S. Witte, K. Eikema, “Ultrafast optical parametric Chirped-Pulse amplification,” Selected Topics in IEEE J. Quant. Electron. 18, 296–307 (2012). [CrossRef]
  18. F. Krausz, M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009). [CrossRef]
  19. D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast fourier transform processing,” Nature Photonics 5, 364–371 (2011). [CrossRef]
  20. S. A. Diddams, “The evolving optical frequency comb [Invited],” J. Opt. Soc. Am. B 27, B51–B62 (2010). [CrossRef]
  21. T. M. Fortier, A. Bartels, S. A. Diddams, “Octave-spanning Ti:sapphire laser with a repetition rate >1 GHz for optical frequency measurements and comparisons,” Opt. Lett. 31, 1011–1013 (2006). [CrossRef] [PubMed]
  22. J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Reviews of Modern Physics 78, 1135 (2006). [CrossRef]
  23. A. Klenner, M. Golling, U. Keller, “A gigahertz multimode-diode-pumped Yb:KGW enables a strong frequency comb offset beat signal,” Opt. Express 21, 10351–10357 (2013). [CrossRef] [PubMed]
  24. U. Keller, A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Physics Reports 429, 67–120 (2006). [CrossRef]
  25. D. J. H. C. Maas, A.-R. Bellancourt, B. Rudin, M. Golling, H. J. Unold, T. Südmeyer, U. Keller, “Vertical integration of ultrafast semiconductor lasers,” Applied Physics B 88, 493–497 (2007). [CrossRef]
  26. M. Mangold, C. A. Zaugg, S. M. Link, M. Golling, B. W. Tilma, U. Keller, “Pulse repetition rate tuning from 5 to 100 GHz with a high-power semiconductor disk laser,” Opt. Express (to be published).
  27. A. Klenner, F. Emaury, C. Schriber, A. Diebold, C. J. Saraceno, S. Schilt, U. Keller, T. Südmeyer, “Phase-stabilization of the carrier-envelope-offset frequency of a SESAM modelocked thin disk laser,” Opt. Express 21, 24770–24780 (2013). [CrossRef] [PubMed]
  28. U. Keller, “Ultrafast solid-state lasers,” in Landolt-Börnstein, Laser Physics and Applications, Subvolume B: Laser Systems, Part I., G. Herziger, H. Weber, R. Poprawe, eds. (Springer-Verlag, Heidelberg, 2007), pp. 33–167.
  29. V. Pervak, O. Pronin, O. Razskazovskaya, J. Brons, I. B. Angelov, M. K. Trubetskov, A. V. Tikhonravov, F. Krausz, “High-dispersive mirrors for high power applications,” Opt. Express 20, 4503–4508 (2012). [CrossRef] [PubMed]
  30. R. Szipöcs, C. Spielmann, F. Krausz, K. Ferencz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19, 201–203 (1994). [CrossRef] [PubMed]
  31. N. Matuschek, F. X. Kärtner, U. Keller, “Theory of double-chirped mirrors,” Selected Topics in Quantum Electronics, IEEE Journal of 4, 197–208 (1998). [CrossRef]
  32. R. DeSalvo, A. Said, D. Hagan, E. Van Stryland, M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quant. Electron. 32, 1324–1333 (1996). [CrossRef]
  33. S. V. Marchese, C. R. Baer, A. G. Engqvist, S. Hashimoto, D. J. H. C. Maas, M. Golling, T. Südmeyer, U. Keller, “Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level,” Opt. Express 16, 6397–6407 (2008). [CrossRef] [PubMed]
  34. F. O. Ilday, F. W. Wise, “Nonlinearity management: a route to high-energy soliton fiber lasers,” J. Opt. Soc. Am. B 19, 470–476 (2002). [CrossRef]
  35. X. Liu, L. Qian, F. Wise, “High-energy pulse compression by use of negative phase shifts produced by the cascade χ(2): χ(2)nonlinearity,” Opt. Lett. 24, 1777–1779 (1999). [CrossRef]
  36. S. Ashihara, J. Nishina, T. Shimura, K. Kuroda, “Soliton compression of femtosecond pulses in quadratic media,” J. Opt. Soc. Am. B 19, 2505–2510 (2002). [CrossRef]
  37. J. Moses, F. W. Wise, “Soliton compression in quadratic media: high-energy few-cycle pulses with a frequency-doubling crystal,” Opt. Lett. 31, 1881–1883 (2006). [CrossRef] [PubMed]
  38. F. O. Ilday, K. Beckwitt, Y.-F. Chen, H. Lim, F. W. Wise, “Controllable raman-like nonlinearities from nonstationary, cascaded quadratic processes,” J. Opt. Soc. Am. B 21, 376–383 (2004). [CrossRef]
  39. C. Langrock, M. M. Fejer, I. Hartl, M. E. Fermann, “Generation of octave-spanning spectra inside reverse-proton-exchanged periodically poled lithium niobate waveguides,” Opt. Lett. 32, 2478–2480 (2007). [CrossRef] [PubMed]
  40. C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, I. Hartl, M. E. Fermann, “Supercontinuum generation in quasi-phasematched waveguides,” Opt. Express 19, 18754–18773 (2011). [CrossRef] [PubMed]
  41. C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, J. Jiang, M. E. Fermann, I. Hartl, “Supercontinuum generation in quasi-phase-matched LiNbO3 waveguide pumped by a Tm-doped fiber laser system,” Opt. Lett. 36, 3912–3914 (2011). [CrossRef] [PubMed]
  42. V. Ulvila, C. R. Phillips, L. Halonen, M. Vainio, “Frequency comb generation by a continuous-wave-pumped optical parametric oscillator based on cascading quadratic nonlinearities,” Opt. Lett. 38, 4281–4284 (2013). [CrossRef] [PubMed]
  43. C. R. Phillips, M. M. Fejer, “Efficiency and phase of optical parametric amplification in chirped quasi-phase-matched gratings,” Opt. Lett. 35, 3093–3095 (2010). [CrossRef] [PubMed]
  44. C. R. Phillips, M. M. Fejer, “Adiabatic optical parametric oscillators: steady-state and dynamical behavior,” Opt. Express 20, 2466–2482 (2012). [CrossRef] [PubMed]
  45. C. R. Phillips, C. Langrock, D. Chang, Y. W. Lin, L. Gallmann, M. M. Fejer, “Apodization of chirped quasi-phasematching devices,” J. Opt. Soc. Am. B 30, 1551–1568 (2013). [CrossRef]
  46. L. Qian, X. Liu, F. Wise, “Femtosecond kerr-lens mode locking with negative nonlinear phase shifts,” Opt. Lett. 24, 166–168 (1999). [CrossRef]
  47. M. Zavelani-Rossi, G. Cerullo, V. Magni, “Mode locking by cascading of second-order nonlinearities,” Quantum Electronics, IEEE Journal of 34, 61–70 (1998). [CrossRef]
  48. A. Agnesi, A. Guandalini, G. Reali, “Self-stabilized and dispersion-compensated passively mode-locked Yb:Yttrium aluminum garnet laser,” Applied Physics Letters 86, 171105 (2005). [CrossRef]
  49. A. Agnesi, L. Carrà, F. Pirzio, G. Reali, “Femtosecond Nd:glass oscillator operating in normal dispersion regime,” Opt. Express 16, 9549–9553 (2008). [CrossRef] [PubMed]
  50. R. W. Boyd, Nonlinear Optics (Academic, 2008, 3rd edition).
  51. K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” Quantum Electronics, IEEE Journal of 30, 2950–2952 (1994). [CrossRef]
  52. D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical-crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum. Electron. 28, 2057–2074 (1992). [CrossRef]
  53. M. Sheik-Bahae, M. Ebrahimzadeh, “Measurements of nonlinear refraction in the second-order χ(2) materials KTiOPO4, KNbO3, β-BaB2O4, and LiB3O5,” Optics Communications 142, 294–298 (1997). [CrossRef]
  54. B. Braun, F. Heine, T. Kellner, C. Hönninger, G. Zhang, G. Huber, U. Keller, “Efficient intracavity frequency doubling of a passively mode-locked diode-pumped neodymium lanthanum scandium borate laser,” Opt. Lett. 21, 1567–1569 (1996). [CrossRef] [PubMed]
  55. G. Imeshev, M. A. Arbore, S. Kasriel, M. M. Fejer, “Pulse shaping and compression by second-harmonic generation with quasi-phase-matching gratings in the presence of arbitrary dispersion,” J. Opt. Soc. Am. B 17, 1420–1437 (2000). [CrossRef]
  56. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2006).
  57. C. R. Phillips, L. Gallmann, M. M. Fejer, “Design of quasi-phasematching gratings via convex optimization,” Opt. Express 21, 10139–10159 (2013). [CrossRef] [PubMed]
  58. C. Conti, S. Trillo, P. Di Trapani, J. Kilius, A. Bramati, S. Minardi, W. Chinaglia, G. Valiulis, “Effective lensing effects in parametric frequency conversion,” J. Opt. Soc. Am. B 19, 852 (2002). [CrossRef]
  59. G. G. Luther, M. S. Alber, J. E. Marsden, J. M. Robbins, “Geometric analysis of optical frequency conversion and its control in quadratic nonlinear media,” J. Opt. Soc. Am. B 17, 932–941 (2000). [CrossRef]
  60. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16, 46–56 (1999). [CrossRef]
  61. R. Grange, M. Haiml, R. Paschotta, G. Spühler, L. Krainer, M. Golling, O. Ostinelli, U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Applied Physics B 80, 151–158 (2005). [CrossRef]
  62. H. A. Haus, E. P. Ippen, “Self-starting of passively mode-locked lasers,” Opt. Lett. 16, 1331–1333 (1991). [CrossRef] [PubMed]
  63. J. Petit, P. Goldner, B. Viana, “Laser emission with low quantum defect in Yb:CaGdAlO4,” Opt. Lett. 30, 1345–1347 (2005). [CrossRef] [PubMed]
  64. A. Diebold, F. Emaury, C. Schriber, M. Golling, C. J. Saraceno, T. Südmeyer, U. Keller, “SESAM mode-locked Yb:CaGdAlO4 thin disk laser with 62 fs pulse generation,” Opt. Lett. 38, 3842–3845 (2013). [CrossRef] [PubMed]
  65. Y. Zaouter, J. Didierjean, F. Balembois, G. L. Leclin, F. Druon, P. Georges, J. Petit, P. Goldner, B. Viana, “47-fs diode-pumped Yb3+:CaGdAlO4 laser,” Opt. Lett. 31, 119–121 (2006). [CrossRef] [PubMed]
  66. A. Agnesi, A. Greborio, F. Pirzio, G. Reali, J. A. der Au, A. Guandalini, “40-fs Yb3+:CaGdAlO4 laser pumped by a single-mode 350-mW laser diode,” Opt. Express 20, 10077–10082 (2012). [CrossRef] [PubMed]
  67. A. Greborio, A. Guandalini, J. Aus der Au, “Sub-100 fs pulses with 12.5-W from Yb:CALGO based oscillators,” in “Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series,”, vol. 8235 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series(2012), vol. 8235 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series.
  68. S. Ricaud, A. Jaffres, K. Wentsch, A. Suganuma, B. Viana, P. Loiseau, B. Weichelt, M. Abdou-Ahmed, A. Voss, T. Graf, D. Rytz, C. Hönninger, E. Mottay, P. Georges, F. Druon, “Femtosecond Yb:CaGdAlO4 thin-disk oscillator,” Opt. Lett. 37, 3984–3986 (2012). [CrossRef] [PubMed]
  69. K. Beil, B. Deppe, C. Kränkel, “Yb:CaGdAlO4 thin-disk laser with 70% slope efficiency and 90 nm wavelength tuning range,” Opt. Lett. 38, 1966–1968 (2013). [CrossRef] [PubMed]
  70. R. Paschotta, H. Telle, U. Keller, “Noise of Solid-State Lasers,” in Solid-State Lasers and Applications, Alphan Sennaroglu, editor. (CRC, Taylor and Francis Group, LLC, 2007), chapter 12.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited