OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 5 — Mar. 10, 2014
  • pp: 6133–6146

Opto-mechanical analysis of nonlinear elastomer membrane deformation under hydraulic pressure for variable-focus liquid-filled microlenses

Seung Tae Choi, Byeong Soo Son, Gye Won Seo, Si-Young Park, and Kyung-Sick Lee  »View Author Affiliations


Optics Express, Vol. 22, Issue 5, pp. 6133-6146 (2014)
http://dx.doi.org/10.1364/OE.22.006133


View Full Text Article

Enhanced HTML    Acrobat PDF (5159 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Nonlinear large deformation of a transparent elastomer membrane under hydraulic pressure was analyzed to investigate its optical performance for a variable-focus liquid-filled membrane microlens. In most membrane microlenses, actuators control the hydraulic pressure of optical fluid so that the elastomer membrane together with the internal optical fluid changes its shape, which alters the light path of the microlens to adapt its optical power. A fluid-structure interaction simulation was performed to estimate the transient behavior of the microlens under the operation of electroactive polymer actuators, demonstrating that the viscosity of the optical fluid successfully stabilizes the fluctuations within a fairly short period of time during dynamic operations. Axisymmetric nonlinear plate theory was used to calculate the deformation profile of the membrane under hydrostatic pressure, with which optical characteristics of the membrane microlens were estimated. The effects of gravitation and viscoelastic behavior of the elastomer membrane on the optical performance of the membrane microlens were also evaluated with finite element analysis.

© 2014 Optical Society of America

OCIS Codes
(220.1000) Optical design and fabrication : Aberration compensation
(230.3990) Optical devices : Micro-optical devices
(220.1080) Optical design and fabrication : Active or adaptive optics

ToC Category:
Optical Devices

History
Original Manuscript: December 30, 2013
Revised Manuscript: March 2, 2014
Manuscript Accepted: March 3, 2014
Published: March 7, 2014

Citation
Seung Tae Choi, Byeong Soo Son, Gye Won Seo, Si-Young Park, and Kyung-Sick Lee, "Opto-mechanical analysis of nonlinear elastomer membrane deformation under hydraulic pressure for variable-focus liquid-filled microlenses," Opt. Express 22, 6133-6146 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-5-6133


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Chronis, G. Liu, K. H. Jeong, L. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11(19), 2370–2378 (2003). [CrossRef] [PubMed]
  2. S. W. Lee, S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90(12), 121129 (2007). [CrossRef]
  3. F. Schneider, C. Müller, U. Wallrabe, “A low cost adaptive silicone membrane lens,” J. Opt. A, Pure Appl. Opt. 10(4), 044002 (2008). [CrossRef]
  4. F. Schneider, J. Draheim, C. Müller, U. Wallrabe, “Optimization of an adaptive PDMS-membrane lens with an integrated actuator,” Sens. Actuator A Phys. 154(2), 316–321 (2009). [CrossRef]
  5. J. Draheim, F. Schneider, R. Kamberger, C. Mueller, U. Wallrabe, “Fabrication of a fluidic membrane lens system,” J. Micromech. Microeng. 19(9), 095013 (2009). [CrossRef]
  6. F. Schneider, J. Draheim, R. Kamberger, P. Waibel, U. Wallrabe, “Optical characterization of adaptive fluidic silicone-membrane lenses,” Opt. Express 17(14), 11813–11821 (2009). [CrossRef] [PubMed]
  7. S. T. Choi, J. Y. Lee, J. O. Kwon, S. Lee, W. Kim, “Varifocal liquid-filled microlens operated by an electroactive polymer actuator,” Opt. Lett. 36(10), 1920–1922 (2011). [CrossRef] [PubMed]
  8. W. Zhang, K. Aljasem, H. Zappe, A. Seifert, “Completely integrated, thermo-pneumatically tunable microlens,” Opt. Express 19(3), 2347–2362 (2011). [CrossRef] [PubMed]
  9. A. Pouydebasque, C. Bridoux, F. Jacquet, S. Moreau, E. Sage, D. Saint-Patrice, C. Bouvier, C. Kopp, G. Marchand, S. Bolis, N. Sillon, E. Vigier-Blanc, “Varifocal liquid lenses with integrated actuator, high focusing power and low operating voltage fabricated on 200 mm wafers,” Sens. Actuator A Phys. 172(1), 280–286 (2011). [CrossRef]
  10. H. Choi, D. S. Han, Y. H. Won, “Adaptive double-sided fluidic lens of polydimethylsiloxane membranes of matching thickness,” Opt. Lett. 36(23), 4701–4703 (2011). [CrossRef] [PubMed]
  11. H. Choi, D. S. Han, Y. H. Won, “Fluidic lens of PDMS membrane driven by voice-coil and magnet,” IEEE Photonics Technol. Lett. 24(19), 1683–1685 (2012). [CrossRef]
  12. J. K. Lee, K. Park, J. C. Choi, H. Kim, S. H. Kong, “Design and fabrication of PMMA-micromachined fluid lens based on electromagnetic actuation on PMMA-PDMS bonded membrane,” J. Micromech. Microeng. 22(11), 115028 (2012). [CrossRef]
  13. S. Shian, R. M. Diebold, D. R. Clarke, “Tunable lenses using transparent dielectric elastomer actuators,” Opt. Express 21(7), 8669–8676 (2013). [CrossRef] [PubMed]
  14. S. T. Choi, J. O. Kwon, F. Bauer, “Multilayered relaxor ferroelectric polymer actuators for low-voltage operation fabricated with an adhesion-mediated film transfer technique,” Sens. Actuators A Phys. 203, 282–290 (2013). [CrossRef]
  15. COMSOL, “COMSOL Multiphysics, Version 3.3” (2006).
  16. S. T. Choi, S. J. Jeong, Y. Y. Earmme, “Modified-creep experiment of an elastomer film on a rigid substrate using nanoindentation with a flat-ended cylindrical tip,” Scr. Mater. 58(3), 199–202 (2008). [CrossRef]
  17. S. Timoshenko, S. Woinowsky-Krieger, and S. Woinowsky, Theory of Plates and Shells (McGraw-Hill, 1959).
  18. D. Malacara and Z. Malacara, Handbook of Optical Design (Marcel Dekker, 2004).
  19. Dassault Systèmes Simulia Corp., “ABAQUS Version 6.12” (2013).
  20. R. Christensen, Theory of Viscoelasticity: An Introduction (Elsevier, 1982).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited