OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 5 — Mar. 10, 2014
  • pp: 6147–6153

Pulse bundles and passive harmonic mode-locked pulses in Tm-doped fiber laser based on nonlinear polarization rotation

Xiong Wang, Pu Zhou, Xiaolin Wang, Hu Xiao, and Zejin Liu  »View Author Affiliations

Optics Express, Vol. 22, Issue 5, pp. 6147-6153 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1075 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the nanosecond-level pulses in Tm-doped fiber laser generated by passively harmonic mode-locking. Nonlinear polarization rotation performed by two polarization controllers (PCs) is employed to induce the self-starting harmonic mode-locking. The fundamental repetition rate of the laser is 448.8 kHz, decided by the length of the cavity. Bundles of pulses with up to 17 uniform subpulses are generated due to the split of pulse when the pump power increases and the PCs are adjusted. Continuous harmonic mode-locked pulse trains are obtained with 1st to 6th and even more than 15th order when the positions of the PCs are properly fixed and the pump power is scaled up. The widths of all the uniform individual pulses are mostly 3-5 ns, and pulse with width of 304 ns at fundamental repetition rate can also be generated by adjusting the PCs. Hysteresis phenomenon of the passively harmonic mode-locked pulses’ repetition frequency versus pump power is observed. The rather wide 3dB spectral bandwidth of the pulse train (25 nm) indicates that they may resemble noise-like pulses.

© 2014 Optical Society of America

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3410) Lasers and laser optics : Laser resonators
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.3538) Lasers and laser optics : Lasers, pulsed
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Lasers and Laser Optics

Original Manuscript: December 30, 2013
Revised Manuscript: February 18, 2014
Manuscript Accepted: February 21, 2014
Published: March 7, 2014

Xiong Wang, Pu Zhou, Xiaolin Wang, Hu Xiao, and Zejin Liu, "Pulse bundles and passive harmonic mode-locked pulses in Tm-doped fiber laser based on nonlinear polarization rotation," Opt. Express 22, 6147-6153 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Geng, Q. Wang, S. Jiang, “2 μm fiber laser sources and their applications,” Proc. SPIE 8164, 816409 (2011). [CrossRef]
  2. Q. Fang, W. Shi, K. Kieu, E. Petersen, A. Chavez-Pirson, N. Peyghambarian, “High power and high energy monolithic single frequency 2 μm nanosecond pulsed fiber laser by using large core Tm-doped germanate fibers: experiment and modeling,” Opt. Express 20(15), 16410–16420 (2012). [CrossRef]
  3. S. D. Jackson, T. A. King, “High-power diode-cladding-pumped Tm-doped silica fiber laser,” Opt. Lett. 23(18), 1462–1464 (1998). [CrossRef] [PubMed]
  4. Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, D. J. Richardson, “Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800 - 2050 nm window,” Opt. Express 21(22), 26450–26455 (2013). [CrossRef] [PubMed]
  5. M. E. Fermann, A. Galvanauskas, G. Sucha, D. Harter, “Fiber-lasers for ultrafast optics,” Appl. Phys. B 65(2), 259–275 (1997). [CrossRef]
  6. M. E. Fermann, I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15(1), 191–206 (2009). [CrossRef]
  7. W. Zhou, D. Shen, Y. Wang, H. Ma, F. Wang, “A stable polarization switching laser from a bidirectional passively mode-locked thulium-doped fiber oscillator,” Opt. Express 21(7), 8945–8952 (2013). [CrossRef] [PubMed]
  8. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010). [CrossRef] [PubMed]
  9. Q. Wang, T. Chen, M. Li, B. Zhang, Y. Lu, K. P. Chen, “All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes,” Appl. Phys. Lett. 103(1), 011103 (2013). [CrossRef]
  10. M. S. Kang, N. Y. Joly, P. S. J. Russell, “Passive mode-locking of fiber ring laser at the 337th harmonic using gigahertz acoustic core resonances,” Opt. Lett. 38(4), 561–563 (2013). [CrossRef] [PubMed]
  11. M. A. Chernysheva, A. A. Krylov, P. G. Kryukov, E. M. Dianov, “Nonlinear amplifying loop-mirror-based mode-locked Thulium-doped fiber laser,” IEEE Photon. Technol. Lett. 24(14), 1254–1256 (2012). [CrossRef]
  12. M. J. Guy, D. U. Noske, A. Boskovic, J. R. Taylor, “Femtosecond soliton generation in a praseodymium fluoride fiber laser,” Opt. Lett. 19(11), 828–830 (1994). [CrossRef] [PubMed]
  13. V. J. Matsas, T. P. Newson, M. N. Zervas, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarisation switching,” Opt. Commun. 92(1-3), 61–66 (1992). [CrossRef]
  14. H. A. Haus, E. P. Ippen, K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30(1), 200–208 (1994). [CrossRef]
  15. E. P. Ippen, L. Y. Liu, H. A. Haus, “Self-starting condition for additive-pulse mode-locked lasers,” Opt. Lett. 15(3), 183–185 (1990). [CrossRef] [PubMed]
  16. A. K. Komarov, K. P. Komarov, “Pulse splitting in a passive mode-locked laser,” Opt. Commun. 183(1-4), 265–270 (2000). [CrossRef]
  17. C. Wang, W. Zhang, K. F. Lee, K. Yoo, “Pulse splitting in a self-mode-locked Ti sapphire laser,” Opt. Commun. 137(1-3), 89–92 (1997). [CrossRef]
  18. K. Tamura, H. A. Haus, E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226–2228 (1992). [CrossRef]
  19. D. Y. Tang, L. M. Zhao, B. Zhao, A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005). [CrossRef]
  20. X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A 81(2), 023811 (2010). [CrossRef]
  21. A. B. Grudinin, D. J. Richardson, D. N. Payne, “Passive harmonic modelocking of a fibre soliton ring laser,” Electron. Lett. 29(21), 1860–1861 (1993). [CrossRef]
  22. J. Sotor, G. Sobon, K. Krzempek, K. M. Abramski, “Fundamental and harmonic mode-locking in erbium-doped fiber laser based on graphene saturable absorber,” Opt. Commun. 285(13-14), 3174–3178 (2012). [CrossRef]
  23. H. R. Chen, K. H. Lin, C. Y. Tsai, H. H. Wu, C. H. Wu, C. H. Chen, Y. C. Chi, G. R. Lin, W. F. Hsieh, “12 GHz passive harmonic mode-locking in a 1.06 μm semiconductor optical amplifier-based fiber laser with figure-eight cavity configuration,” Opt. Lett. 38(6), 845–847 (2013). [CrossRef] [PubMed]
  24. S. W. Harun, N. Saidin, D. I. M. Zen, N. M. Ali, H. Ahmad, F. Ahmad, K. Dimyati, “Self-starting harmonic mode-locked Thulium-doped fiber laser with carbon nanotubes saturable absorber,” Chin. Phys. Lett. 30(9), 094204 (2013). [CrossRef]
  25. S. T. Hendow, S. A. Shakir, “Structuring materials with nanosecond laser pulses,” Opt. Express 18(10), 10188–10199 (2010). [CrossRef] [PubMed]
  26. H. Herfurth, R. Patwa, T. Lauterborn, S. Heinemann, H. Pantsar, “Micromachining with tailored nanosecond pulses,” Proc. SPIE 6796, 67961G (2007). [CrossRef]
  27. A. Ivanenko, S. Turitsyn, S. Kobsev, M. Dubov, “Mode-locking in 25-km fibre laser,” in Proceedings of ECOC (2010), pp. 1–3.
  28. A. B. Grudinin, D. J. Richardson, D. N. Payne, “Energy quantisation in figure eight fibre laser,” Electron. Lett. 28(1), 67–68 (1992). [CrossRef]
  29. Q. Wang, T. Chen, B. Zhang, A. P. Heberle, K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring oscillator operated at solitary and noiselike modes,” Opt. Lett. 36(19), 3750–3752 (2011). [CrossRef] [PubMed]
  30. X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, Z. Yang, “60 nm bandwidth, 17 nJ noiselike pulse generation from a Thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited