OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 5 — Mar. 10, 2014
  • pp: 6165–6173

A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator

Junsu Lee, Joonhoi Koo, Young Min Jhon, and Ju Han Lee  »View Author Affiliations

Optics Express, Vol. 22, Issue 5, pp. 6165-6173 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1340 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally demonstrate the use of a bulk-structured Bi2Te3 topological insulator (TI) as an ultrafast mode-locker to generate femtosecond pulses from an all-fiberized cavity. Using a saturable absorber based on a mechanically exfoliated layer about 15 μm thick deposited onto a side-polished fiber, we show that stable soliton pulses with a temporal width of ~600 fs can readily be produced at 1547 nm from an erbium fiber ring cavity. Unlike previous TI-based mode-locked laser demonstrations, in which high-quality nanosheet-based TIs were used for saturable absorption, we chose to use a bulk-structured Bi2Te3 layer because it is easy to fabricate. We found that the bulk-structured Bi2Te3 layer can readily provide sufficient nonlinear saturable absorption for femtosecond mode-locking even if its modulation depth of ~15.7% is much lower than previously demonstrated nanosheet-structured TI-based saturable absorbers. This experimental demonstration indicates that high-crystalline-quality atomic-layered films of TI, which demand complicated and expensive material processing facilities, are not essential for ultrafast laser mode-locking applications.

© 2014 Optical Society of America

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(160.4330) Materials : Nonlinear optical materials
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Ultrafast Optics

Original Manuscript: January 13, 2014
Revised Manuscript: February 19, 2014
Manuscript Accepted: February 24, 2014
Published: March 7, 2014

Junsu Lee, Joonhoi Koo, Young Min Jhon, and Ju Han Lee, "A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator," Opt. Express 22, 6165-6173 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Z. Hasan, C. L. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82(4), 3045–3067 (2010). [CrossRef]
  2. B. A. Bernevig, T. L. Hughes, S.-C. Zhang, “Quantum spin Hall effect and topological phase transition in HgTe quantum wells,” Science 314(5806), 1757–1761 (2006). [CrossRef] [PubMed]
  3. M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, S.-C. Zhang, “Quantum spin Hall insulator state in HgTe quantum wells,” Science 318(5851), 766–770 (2007). [CrossRef] [PubMed]
  4. D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, M. Z. Hasan, “A topological Dirac insulator in a quantum spin Hall phase,” Nature 452(7190), 970–974 (2008). [CrossRef] [PubMed]
  5. Y. S. Hor, A. Richardella, P. Roushan, Y. Xia, J. G. Checkelsky, A. Yazdani, M. Z. Hasan, N. P. Qng, R. J. Cava, “p-type Bi2Se3 for topological insulator and low-temperature thermoelectric applications,” Phys. Rev. B 79(19), 195208 (2009). [CrossRef]
  6. Y. L. Chen, J. G. Analytis, J.-H. Chu, Z. K. Liu, S.-K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, Z.-X. Shen, “Experimental realization of a three-dimensional topological insulator, Bi2Te3.,” Science 325(5937), 178–181 (2009). [CrossRef] [PubMed]
  7. H.-J. Noh, H. Koh, S.-J. Oh, J.-H. Park, H.-D. Kim, J. D. Rameau, T. Valla, T. E. Kidd, P. D. Johnson, Y. Hu, Q. Li, “Spin-orbit interaction effect in the electronic structure of Bi2Te3 observed by angle-resolve photoemission spectroscopy,” Europhys. Lett. 81(5), 57006 (2008). [CrossRef]
  8. Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, M. Z. Hasan, “Observation of a large-gap topological-insulator class with a single Dirac cone on the surface,” Nat. Phys. 5(6), 398–402 (2009). [CrossRef]
  9. X.-L. Qi, S.-C. Zhang, “Topological insulators and superconductors,” Rev. Mod. Phys. 83(4), 1057–1110 (2011). [CrossRef]
  10. X.-L. Qi, T. L. Hughes, S.-C. Zhang, “Topological field theory of time-reversal invariant insulators,” Phys. Rev. B 78(19), 195424 (2008). [CrossRef]
  11. Z. Wang, Y. Chong, J. D. Joannopoulos, M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009). [CrossRef] [PubMed]
  12. F. Bernard, H. Zhang, S. P. Gorza, and P. Emplit, “Towards mode-locked fiber laser using topological insulators,” in Nonlinear Photonics, OSA Technical Digest (online) (Optical Society of America, 2012), paper NTh1A.5.
  13. C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012). [CrossRef]
  14. C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, D. Tang, “Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi2Se3 as a mode locker,” Opt. Express 20(25), 27888–27895 (2012). [CrossRef] [PubMed]
  15. Y. Chen, C. Zhao, H. Huang, S. Chen, P. Tang, Z. Wang, S. Lu, H. Zhang, S. Wen, D. Tang, “Self-assembled topological insulator: Bi2Se3 membrane as a passive Q-switcher in an erbium-doped fiber laser,” J. Lightwave Technol. 31(17), 2857–2863 (2013). [CrossRef]
  16. H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7(6), L77–L83 (2013). [CrossRef]
  17. P. Tang, X. Zhang, C. Zhao, Y. Wang, H. Zhang, D. Shen, S. Wen, D. Tang, D. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG Ceramic laser,” IEEE Photon. J. 5(2), 1500707 (2013). [CrossRef]
  18. Z. Luo, Y. Huang, J. Weng, H. Cheng, Z. Lin, B. Xu, Z. Cai, H. Xu, “1.06μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber,” Opt. Express 21(24), 29516–29522 (2013). [CrossRef] [PubMed]
  19. J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K. Grodecki, K. M. Abramski, “Mode-locking in Er-doped fiber laser based on mechanically exfoliated Sb2Te3 saturable absorber,” Opt. Mater. Express 4(1), 1–6 (2014). [CrossRef]
  20. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996). [CrossRef]
  21. O. G. Okhotnikov, L. Gomes, N. Xiang, T. Jouhti, A. B. Grudinin, “Mode-locked ytterbium fiber laser tunable in the 980-1070-nm spectral range,” Opt. Lett. 28(17), 1522–1524 (2003). [CrossRef] [PubMed]
  22. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yang, Z. X. Shen, K. P. Loh, D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009). [CrossRef]
  23. S. Yamashita, “A tutorial on nonlinear photonic applications of carbon nanotube and graphene,” J. Lightwave Technol. 30(4), 427–447 (2012). [CrossRef]
  24. G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, K. M. Abramski, “Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser,” Opt. Express 20(17), 19463–19473 (2012). [CrossRef] [PubMed]
  25. Z. Sun, T. Hasan, A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E 44(6), 1082–1091 (2012). [CrossRef]
  26. J. Xu, J. Liu, S. Wu, Q.-H. Yang, P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express 20(14), 15474–15480 (2012). [CrossRef] [PubMed]
  27. M. Jung, J. Koo, J. Park, Y.-W. Song, Y. M. Jhon, K. Lee, S. Lee, J. H. Lee, “Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber,” Opt. Express 21(17), 20062–20072 (2013). [CrossRef] [PubMed]
  28. P. Cerný, G. Valentine, D. Burns, K. McEwan, “Passive stabilization of a passively mode-locked laser by nonlinear absorption in indium phosphide,” Opt. Lett. 29(12), 1387–1389 (2004). [CrossRef] [PubMed]
  29. F. Dausinger, F. Lichtner, and H. Lubatschowski, Femtosecond technology for technical and medical applications, (Springer, Heidelbert, 2004, Series: Topics in Applied Physics, vol. 96).
  30. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004). [CrossRef] [PubMed]
  31. D. Teweldebrhan, V. Goyal, A. A. Balandin, “Exfoliation and characterization of bismuth telluride atomic quintuples and quasi-two-dimensional crystals,” Nano Lett. 10(4), 1209–1218 (2010). [CrossRef] [PubMed]
  32. E. A. Vinogradov, “Cavity electrodynamics in polariton spectra of thin films,” Laser Phys. 6(2), 326–333 (1996).
  33. L. Ren, X. Qi, Y. Liu, G. Hao, Z. Huang, X. Zou, L. Yang, J. Li, J. Zhong, “Large-scale production of ultrathin topological insulator bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route,” J. Mater. Chem. 22(11), 4921–4926 (2012). [CrossRef]
  34. F. Qu, F. Yang, J. Shen, Y. Ding, J. Chen, Z. Ji, G. Liu, J. Fan, X. Jing, C. Yang, L. Lu, “Strong superconducting proximity effect in pb-bi2te3 hybrid structures,” Sci. Rep. 2, 339 (2012). [CrossRef] [PubMed]
  35. W. Lu, Y. Ding, Y. Chen, Z. L. Wang, J. Fang, “Bismuth telluride hexagonal nanoplatelets and their two-step epitaxial growth,” J. Am. Chem. Soc. 127(28), 10112–10116 (2005). [CrossRef] [PubMed]
  36. J. Lee, J. Koo, P. Debnath, Y.-W. Song, J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett. 10(3), 035103 (2013). [CrossRef]
  37. S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–808 (1992). [CrossRef]
  38. N. J. Smith, K. J. Blow, I. Andonovic, “Sideband generation through perturbations to the average soliton model,” J. Lightwave Technol. 10(10), 1329–1333 (1992). [CrossRef]
  39. L. W. Liou, G. P. Agrawal, “Effect of frequency chirp on soliton spectral sidebands in fiber lasers,” Opt. Lett. 20(11), 1286–1288 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited