OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 6269–6275

FDTD simulation of transmittance characteristics of one-dimensional conducting electrodes

Kilbock Lee, Seok Ho Song, and Jinho Ahn  »View Author Affiliations

Optics Express, Vol. 22, Issue 6, pp. 6269-6275 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2716 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigated transparent conducting electrodes consisting of periodic one-dimensional Ag or Al grids with widths from 25 nm to 5 μm via the finite-difference time-domain method. To retain high transmittance, two grid configurations with opening ratios of 90% and 95% were simulated. Polarization-dependent characteristics of the transmission spectra revealed that the overall transmittance of micron-scale grid electrodes may be estimated by the sum of light power passing through the uncovered area and the light power penetrating the covered metal layer. However, several dominant physical phenomena significantly affect the transmission spectra of the nanoscale grids: Rayleigh anomaly, transmission decay in TE polarized mode, and localized surface plasmon resonance. We conclude that, for applications of transparent electrodes, the critical feature sizes of conducting 1D grids should not be less than the wavelength scale in order to maintain uniform and predictable transmission spectra and low electrical resistivity.

© 2014 Optical Society of America

OCIS Codes
(160.2100) Materials : Electro-optical materials
(310.6628) Thin films : Subwavelength structures, nanostructures
(310.6805) Thin films : Theory and design
(310.7005) Thin films : Transparent conductive coatings

ToC Category:

Original Manuscript: December 16, 2013
Revised Manuscript: February 25, 2014
Manuscript Accepted: February 26, 2014
Published: March 10, 2014

Kilbock Lee, Seok Ho Song, and Jinho Ahn, "FDTD simulation of transmittance characteristics of one-dimensional conducting electrodes," Opt. Express 22, 6269-6275 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. S. Hecht, L. Hu, G. Irvin, “Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011). [CrossRef] [PubMed]
  2. P. B. Catrysse, S. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett. 10(8), 2944–2949 (2010). [CrossRef] [PubMed]
  3. J. van de Groep, P. Spinelli, A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012). [CrossRef] [PubMed]
  4. L. Hu, D. S. Hecht, G. Grüner, “Percolation in Transparent and Conducting Carbon Nanotube Networks,” Nano Lett. 4(12), 2513–2517 (2004). [CrossRef]
  5. I. Khrapach, F. Withers, T. H. Bointon, D. K. Polyushkin, W. L. Barnes, S. Russo, M. F. Craciun, “Novel highly conductive and transparent graphene-based conductors,” Adv. Mater. 24(21), 2844–2849 (2012). [CrossRef] [PubMed]
  6. A. R. Madaria, A. Kumar, C. Zhou, “Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens,” Nanotechnology 22(24), 245201 (2011). [CrossRef] [PubMed]
  7. M. G. Kang, T. Xu, H. J. Park, X. Luo, L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mater. 22(39), 4378–4383 (2010). [CrossRef] [PubMed]
  8. L. Hu, H. Wu, Y. Cui, “Metal nanogrids, nanowires, and nanofibers for transparent electrodes,” MRS Bull. 36(10), 760–765 (2011). [CrossRef]
  9. K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 809–817 (2012). [CrossRef]
  10. A. Seh-Won, L. Ki-Dong, K. Jin-Sung, K. Sang Hoon, P. Joo-Do, L. Sarng-Hoon, Y. Won, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005). [CrossRef]
  11. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  12. “Lumerical FDTD,” (Lumerical Solutions, Inc.), p. FDTD solutions.
  13. R. C. Weast, CRC handbook of chemistry and physics (CRC Press, 1988).
  14. H. Raether, Excitation of plasmons and interband transitions by electrons (Springer-Verlag, 1980).
  15. P. B. Johnson, R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  16. L. Rayleigh, “III.Note on the remarkable case of diffraction spectra described by Prof. Wood,” Philosophical Magazine Series 6 14(79), 60–65 (1907). [CrossRef]
  17. D. Maystre, “Theory of Wood’s Anomalies,” in Plasmonics, S. Enoch, and N. Bonod, eds. (Springer 2012), pp. 39–83.
  18. N. J. Willis, Bistatic radar (SciTech Publishing, 2005).
  19. W. A. Murray, S. Astilean, W. L. Barnes, “Transition from localized surface plasmon resonance to extended surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array,” Phys. Rev. B 69(16), 165407 (2004). [CrossRef]
  20. G. Mie, “Contributions to the optics of turbid media, particularly of colloidal metal solutions,” Contributions to the optics of turbid media, particularly of colloidal metal solutions Transl. into ENGLISH from Ann. Phys.(Leipzig), v. 25, no. 3, 1908 p 377–445 1, 377–445 (1976).
  21. C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, “Plasmon resonances in large noble-metal clusters,” New J. Phys. 4, 93 (2002). [CrossRef]
  22. S. Link, M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999). [CrossRef]
  23. P. K. Jain, K. S. Lee, I. H. El-Sayed, M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006). [CrossRef] [PubMed]
  24. W. Zhang, S. H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, K. Maex, “Influence of the electron mean free path on the resistivity of thin metal films,” Microelectron. Eng. 76(1-4), 146–152 (2004). [CrossRef]
  25. D. Josell, S. H. Brongersma, Z. Tokei, “Size-Dependent Resistivity in Nanoscale Interconnects,” Annu. Rev. Mater. Res. 39(1), 231–254 (2009). [CrossRef]
  26. K. Fuchs, N. F. Mott, “The conductivity of thin metallic films according to the electron theory of metals,” Math. Proc. Camb. Philos. Soc. 34(01), 100–108 (1938). [CrossRef]
  27. E. H. Sondheimer, “The mean free path of electrons in metals,” Adv. Phys. 1(1), 1–42 (1952). [CrossRef]
  28. J. van de Groep, P. Spinelli, A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012). [CrossRef] [PubMed]
  29. S. J. Jeong, J. E. Kim, H. S. Moon, B. H. Kim, S. M. Kim, J. B. Kim, S. O. Kim, “Soft Graphoepitaxy of Block Copolymer Assembly with Disposable Photoresist Confinement,” Nano Lett. 9(6), 2300–2305 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited