OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 6287–6295

Tunable reflector with active magnetic metamaterials

Tianwei Deng, Ruifeng Huang, Ming-Chun Tang, and Peng Khiang Tan  »View Author Affiliations


Optics Express, Vol. 22, Issue 6, pp. 6287-6295 (2014)
http://dx.doi.org/10.1364/OE.22.006287


View Full Text Article

Enhanced HTML    Acrobat PDF (2785 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We placed active magnetic metamaterials on metallic surface to implement a tunable reflector with excellent agile performance. By incorporating active elements into the unit cells of the magnetic metamaterial, this active magnetic metamaterial can be tuned to switch function of the reflector among a perfect absorber, a perfect reflector and a gain reflector. This brings about DC control lines to electrically tune the active magnetic metamaterial with positive loss, zero loss and even negative loss. The design, analytical and numerical simulation methods, and experimental results of the tunable reflector are presented.

© 2014 Optical Society of America

OCIS Codes
(350.4010) Other areas of optics : Microwaves
(310.3915) Thin films : Metallic, opaque, and absorbing coatings
(160.3918) Materials : Metamaterials
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Metamaterials

History
Original Manuscript: December 30, 2013
Revised Manuscript: February 20, 2014
Manuscript Accepted: February 25, 2014
Published: March 10, 2014

Citation
Tianwei Deng, Ruifeng Huang, Ming-Chun Tang, and Peng Khiang Tan, "Tunable reflector with active magnetic metamaterials," Opt. Express 22, 6287-6295 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-6-6287


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. R. Smith, J. B. Pendry, M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004). [CrossRef] [PubMed]
  2. E. Ekmekci, K. Topalli, T. Akin, G. Turhan-Sayan, “A tunable multi-band metamaterial design using micro-split SRR structures,” Opt. Express 17(18), 16046–16058 (2009). [CrossRef] [PubMed]
  3. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008). [CrossRef] [PubMed]
  4. A. E. Nikolaenko, N. Papasimakis, A. Chipouline, F. De Angelis, E. Di Fabrizio, N. I. Zheludev, “THz bandwidth optical switching with carbon nanotube metamaterial,” Opt. Express 20(6), 6068–6079 (2012). [CrossRef] [PubMed]
  5. J. B. Pendry, D. Schurig, D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  6. H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N.I. Zheludev, B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
  7. B. Kanté, A. de Lustrac, J. M. Lourtioz, S. N. Burokur, “Infrared cloaking based on the electric response of split ring resonators,” Opt. Express 16(12), 9191–9198 (2008). [CrossRef] [PubMed]
  8. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
  9. H. Wang, L. Wang, “Perfect selective metamaterial solar absorber,” Opt. Express 21(S6), A1078–A1093 (2013). [CrossRef]
  10. R. Alaee, M. Farhat, C. Rockstuhl, F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012). [CrossRef] [PubMed]
  11. N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005). [CrossRef] [PubMed]
  12. F. Capolino, Theory and Phenomena of Metamaterials (CRC Press LLC, 2009), Vol. 1.
  13. Y. Dong, T. Itoh, “Metamaterial-based antennas,” Proc. IEEE 100(7), 2271–2285 (2012). [CrossRef]
  14. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010). [CrossRef] [PubMed]
  15. Y. Yuan, B. I. Popa, S. A. Cummer, “Zero loss magnetic metamaterials using powered active unit cells,” Opt. Express 17(18), 16135–16143 (2009). [CrossRef] [PubMed]
  16. S.A. Ramakrishna, J.B. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B 67, 201101 (2003).
  17. M. I. Stockman, “Criterion for negative refraction with low optical losses from a fundamental principle of causality,” Phys. Rev. Lett. 98, 177404 (2007).
  18. L. Sun, X. Yang, J. Gao, “Loss-compensated broadband epsilon-near-zero metamaterials with gain media,” Appl. Phys. Lett. 103, 201109 (2013).
  19. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006). [CrossRef] [PubMed]
  20. A. Tennant, B. Chambers, “Adaptive radar absorbing structure with PIN diode controlled active frequency selective surface,” Smart Mater. Struct. 13(1), 122–125 (2004). [CrossRef]
  21. N. Mattiucci, R. Trimm, G. D’Aguanno, N. Akozbek, M.J. Bloemer, “Tunable, narrow-band, all-metallic microwave absorber,” Appl. Phys. Lett. 101, 141115 (2012).
  22. W. Zhu, Y. Huang, I. D. Rukhlenko, G. Wen, M. Premaratne, “Configurable metamaterial absorber with pseudo wideband spectrum,” Opt. Express 20(6), 6616–6621 (2012). [CrossRef] [PubMed]
  23. W. Xu, S. Sonkusale, “Microwave diode switchable metamaterial reflector/absorber,” Appl. Phys. Lett. 103, 031902 (2013).
  24. B. Chambers, “A smart radar absorber,” Smart Mater. Struct. 8(1), 64–72 (1999). [CrossRef]
  25. S. A. Schelkunoff and H. T. Friis, Antennas Theory and Practice, (Wiley, 1966).
  26. D. M. Pozar, Microwave Engineering (Wiley, 2012), p.174.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited