OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 6296–6312

Pulse compression in adiabatically tapered silicon photonic wires

Spyros Lavdas, Jeffrey B. Driscoll, Richard R. Grote, Richard M. Osgood, Jr., and Nicolae C. Panoiu  »View Author Affiliations

Optics Express, Vol. 22, Issue 6, pp. 6296-6312 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3897 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a comprehensive analysis of pulse compression in adiabatically tapered silicon photonic wire waveguides (Si-PhWWGs), both at telecom (λ ∼ 1.55 μm) and mid-IR (λ ≳ 2.1 μm) wavelengths. Our theoretical and computational study is based on a rigorous model that describes the coupled dynamics of the optical field and photogenerated free carriers, as well as the influence of the physical and geometrical parameters of the Si-PhWWGs on these dynamics. We consider both the soliton and non-soliton pulse propagation regimes, rendering the conclusions of this study relevant to a broad range of experimental settings and practical applications. In particular, we show that by engineering the linear and nonlinear optical properties of Si-PhWWGs through adiabatically varying their width, one can achieve more than 10× pulse compression in millimeter-long waveguides. The inter-dependence between the pulse characteristics and compression efficiency is also discussed.

© 2014 Optical Society of America

OCIS Codes
(130.4310) Integrated optics : Nonlinear
(230.4320) Optical devices : Nonlinear optical devices
(230.7380) Optical devices : Waveguides, channeled
(320.5520) Ultrafast optics : Pulse compression
(320.5540) Ultrafast optics : Pulse shaping

ToC Category:
Integrated Optics

Original Manuscript: December 30, 2013
Revised Manuscript: February 22, 2014
Manuscript Accepted: February 24, 2014
Published: March 10, 2014

Spyros Lavdas, Jeffrey B. Driscoll, Richard R. Grote, Richard M. Osgood, and Nicolae C. Panoiu, "Pulse compression in adiabatically tapered silicon photonic wires," Opt. Express 22, 6296-6312 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. QE 5, 454–458 (1969). [CrossRef]
  2. O. E. Martinez, J. P. Gordon, R. L. Fork, “Negative group-velocity dispersion using refraction,” J. Opt. Soc. Am. A 1, 1003–1006 (1984). [CrossRef]
  3. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000). [CrossRef]
  4. G. Imeshev, A. Galvanauskas, D. Harter, M. A. Arbore, M. Proctor, M. M. Fejer, “Engineerable femtosecond pulse shaping by second-harmonic generation with Fourier synthetic quasi-phase-matching gratings,” Opt. Lett. 23, 864–866 (1998). [CrossRef]
  5. N. J. Doran, D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13, 56–58 (1988). [CrossRef] [PubMed]
  6. K. Smith, N. J. Doran, P. G. J. Wigley, “Pulse shaping, compression, and pedestal suppression employing a nonlinear-optical loop mirror,” Opt. Lett. 15, 1294–1296 (1990). [CrossRef] [PubMed]
  7. M. D. Pelusi, Y. Matsui, A. Suzuki, “Pedestal suppression from compressed femtosecond pulses using a nonlinear fiber loop mirror,” IEEE J. Quantum Electron. 35, 867–874 (1999). [CrossRef]
  8. W. J. Tomlinson, R. H. Stolen, C. V. Shank, “Compression of optical pulses chirped by self-phase modulation in fibers,” J. Opt. Soc. Am. B 1, 139–149 (1984). [CrossRef]
  9. M. Nisoli, S. De Silvestri, O. Svelto, R. Szipocs, K. Ferencz, C. Spielmann, S. Sartania, F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22, 522–524 (1997). [CrossRef] [PubMed]
  10. J. T. Manassah, “Pulse compression of an induced-phase-modulated weak signal,” Opt. Lett. 13, 755–757 (1988). [CrossRef] [PubMed]
  11. G. P. Agrawal, P. L. Baldeck, R. R. Alfano, “Optical wave breaking and pulse compression due to cross-phase modulation in optical fibers,” Opt. Lett. 14, 137–139 (1989). [CrossRef] [PubMed]
  12. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, W. J. Tomlinson, “Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers,” Opt. Lett. 8, 289–291 (1983). [CrossRef] [PubMed]
  13. K. A. Ahmed, K. C. Chan, H. F. Liu, “Femtosecond pulse generation from semiconductor laser using the soliton effect compression technique,” IEEE J. Sel. Top. Quantum Electron. 1, 592–600 (1995). [CrossRef]
  14. M. D. Pelusi, H. F. Liu, “Higher order soliton pulse compression in dispersion-decreasing optical fibers,” IEEE J. Quantum Electron. 33, 1430–1439 (1997). [CrossRef]
  15. A. A. Amorim, M. V. Tognetti, P. Oliveira, J. L. Silva, L. M. Bernardo, F. X. Kartner, H. M. Crespo, “Sub-two-cycle pulses by soliton self-compression in highly nonlinear photonic crystal fibers,” Opt. Lett. 34, 3851–3853 (2009). [CrossRef] [PubMed]
  16. A. C. Peacock, “Mid-IR soliton compression in silicon optical fibers and fiber tapers,” Opt. Lett. 37, 818–820 (2012). [CrossRef] [PubMed]
  17. S. V. Chernikov, E. M. Dianov, D. J. Richardson, D. N. Payne, “Soliton pulse compression in dispersion-decreasing fiber,” Opt. Lett. 18, 476–478 (1993). [CrossRef] [PubMed]
  18. M. Nakazawa, E. Yoshida, H. Kubota, Y. Kimura, “Generation of a 170 fs, 10 GHz transform-limited pulse train at 1.55 μm using a dispersion decreasing, erbium-doped active soliton compressor,” Electron. Lett. 30, 2038–2040 (1994). [CrossRef]
  19. J. Hu, B. S. Marks, C. R. Menyuk, J. Kim, T. F. Carruthers, B. M. Wright, T. F. Taunay, E. J. Friebele, “Pulse compression using a tapered microstructure optical fiber,” Opt. Express 14, 4026–4036 (2006). [CrossRef] [PubMed]
  20. M. L. V. Tse, P. Horak, J. H. V. Price, F. Poletti, F. He, D. J. Richardson, “Pulse compression at 1.06 μm in dispersion-decreasing holey fibers,” Opt. Lett. 31, 3504–3506 (2006). [CrossRef] [PubMed]
  21. A. C. Peacock, “Soliton propagation in tapered silicon core fibers,” Opt. Lett. 35, 3697–3699 (2010). [CrossRef] [PubMed]
  22. L. Tong, R. Gattass, J. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003). [CrossRef] [PubMed]
  23. M. Foster, A. Gaeta, Q. Cao, R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express 13, 6848–6855 (2005). [CrossRef] [PubMed]
  24. A. Blanco-Redondo, C. Husko, D. Eades, Y. Zhang, J. Li, T. F. Krauss, B. J. Eggleton, “Observation of soliton compression in silicon photonic crystals,” Nat. Commun. 5, 3160 (2014). [CrossRef] [PubMed]
  25. K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000). [CrossRef]
  26. R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, R. M. Osgood, “Ultracompact corner-mirrors and T-branches in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14, 65–67 (2002). [CrossRef]
  27. Q. Lin, O. J. Painter, G. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modelling and applications,” Opt. Express 15, 16604–16644 (2007). [CrossRef] [PubMed]
  28. J. I. Dadap, N. C. Panoiu, X. G. Chen, I. W. Hsieh, X. P. Liu, C. Y. Chou, E. Dulkeith, S. J. McNab, F. N. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, “Nonlinear-optical phase modification in dispersion-engineered Si photonic wires,” Opt. Express 16, 1280–1299 (2008). [CrossRef] [PubMed]
  29. R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I-W. Hsieh, E. Dulkeith, W. M. J. Green, Y. A. Vlassov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. Photon. 1, 162–235 (2009). [CrossRef]
  30. X. Chen, N. C. Panoiu, I. W. Hsieh, J. I. Dadap, R. M. Osgood, “Third-order dispersion and ultrafast-pulse propagation in silicon wire waveguides,” IEEE Photon. Technol. Lett. 18, 2617–2619 (2006). [CrossRef]
  31. M. Mohebbi, “Silicon photonic nanowire soliton-effect compressor at 1.5 μm,” IEEE Photon. Technol. Lett. 20, 921–923 (2008). [CrossRef]
  32. N. C. Panoiu, X. Chen, R. M. Osgood, “Modulation instability in silicon photonic nanowires,” Opt. Lett. 31, 3609–3611 (2006). [CrossRef] [PubMed]
  33. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006). [CrossRef] [PubMed]
  34. X. Liu, R. M. Osgood, Y. A. Vlasov, W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010). [CrossRef]
  35. O. Boyraz, P. Koonath, V. Raghunathan, B. Jalali, “All optical switching and continuum generation in silicon waveguides,” Opt. Express 12, 4094–4102 (2004). [CrossRef] [PubMed]
  36. I. W. Hsieh, X. Chen, X. P. Liu, J. I. Dadap, N. C. Panoiu, C. Y. Chou, F. Xia, W. M. Green, Y. A. Vlasov, R. M. Osgood, “Supercontinuum generation in silicon photonic wires,” Opt. Express 15, 15242–15249 (2007). [CrossRef] [PubMed]
  37. L. Yin, Q. Lin, G. P. Agrawal, “Soliton fission and supercontinuum generation in silicon waveguides,” Opt. Lett. 32, 391–393 (2007). [CrossRef] [PubMed]
  38. N. C. Panoiu, X. Liu, R. M. Osgood, “Self-steepening of ultrashort pulses in silicon photonic nanowires,” Opt. Lett. 34, 947–949 (2009). [CrossRef] [PubMed]
  39. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13, 4629–4637 (2005). [CrossRef] [PubMed]
  40. R. Espinola, J. Dadap, R. M. Osgood, S. McNab, Y. Vlasov, “C-band wavelength conversion in silicon photonic wire waveguides,” Opt. Express 13, 4341–4349 (2005). [CrossRef] [PubMed]
  41. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15, 12949–12958 (2007). [CrossRef] [PubMed]
  42. S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010). [CrossRef]
  43. J. B. Driscoll, N. Ophir, R. R. Grote, J. I. Dadap, N. C. Panoiu, K. Bergman, R. M. Osgood, “Width-modulation of Si photonic wires for quasi-phase-matching of four-wave-mixing: experimental and theoretical demonstration,” Opt. Express 20, 9227–9242 (2012). [CrossRef] [PubMed]
  44. S. Lavdas, J. B. Driscoll, H. Jiang, R. R. Grote, R. M. Osgood, N. C. Panoiu, “Generation of parabolic similaritons in tapered silicon photonic wires: comparison of pulse dynamics at telecom and mid-infrared wavelengths,” Opt. Lett. 38, 3953–3956 (2013). [CrossRef] [PubMed]
  45. X. Chen, N. C. Panoiu, R. M. Osgood, “Theory of Raman-mediated pulsed amplification in silicon-wire waveguides,” IEEE J. Quantum Electron. 42, 160–170 (2006). [CrossRef]
  46. N. C. Panoiu, J. F. McMillan, C. W. Wong, “Theoretical analysis of pulse dynamics in silicon photonic crystal wire waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 257–266 (2010). [CrossRef]
  47. M. P. Nezhad, O. Bondarenko, M. Khajavikhan, A. Simic, Y. Fainman, “Etch-free low loss silicon waveguides using hydrogen silsesquioxane oxidation masks,” Opt. Express 19, 18827–18832 (2011). [CrossRef] [PubMed]
  48. G. Li, J. Yao, Y. Luo, H. Thacker, A. Mekis, X. Zheng, I. Shubin, J.-H. Lee, K. Raj, J. E. Cunningham, A. V. Krishnamoorthy, “Ultralow-loss, high-density SOI optical waveguide routing for macrochip interconnects,” Opt. Express 20, 12035–12039 (2012). [CrossRef] [PubMed]
  49. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  50. J. Santhanam, G. P. Agrawal, “Raman-induced spectral shifts in optical fibers: general theory based on the moment method,” Opt. Commun. 222, 413–420 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited