OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 6313–6321

Tunable optical and magneto-optical properties of ferrofluid in the terahertz regime

Sai Chen, Fei Fan, Shengjiang Chang, Yinping Miao, Meng Chen, Jining Li, Xianghui Wang, and Lie Lin  »View Author Affiliations


Optics Express, Vol. 22, Issue 6, pp. 6313-6321 (2014)
http://dx.doi.org/10.1364/OE.22.006313


View Full Text Article

Enhanced HTML    Acrobat PDF (4283 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The dielectric property and magneto-optical effects of ferrofluids have been investigated in the terahertz (THz) regime by using THz time-domain spectroscopy. The experiment results show that the refractive index and absorption coefficient of ferrofluid for THz waves rise up with the increase of nanoparticle concentration in the ferrofluid. Moreover, two different THz magneto-optical effects have been found with different external magnetic fields, of which mechanisms have been theoretically explained well by microscopic structure induced refractive index change in the magnetization process and the transverse magneto-optical effect after the saturation magnetization, respectively. This work suggests that ferrofluid is a promising magneto-optical material in the THz regime which has widely potential applications in THz functional devices for THz sensing, modulation, phase retardation, and polarization control.

© 2014 Optical Society of America

OCIS Codes
(160.3820) Materials : Magneto-optical materials
(040.2235) Detectors : Far infrared or terahertz
(160.4236) Materials : Nanomaterials

ToC Category:
Terahertz optics

History
Original Manuscript: January 2, 2014
Revised Manuscript: February 18, 2014
Manuscript Accepted: February 26, 2014
Published: March 10, 2014

Citation
Sai Chen, Fei Fan, Shengjiang Chang, Yinping Miao, Meng Chen, Jining Li, Xianghui Wang, and Lie Lin, "Tunable optical and magneto-optical properties of ferrofluid in the terahertz regime," Opt. Express 22, 6313-6321 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-6-6313


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Chan, M. L. Moravec, R. G. Baraniuk, D. M. Mittleman, “Terahertz imaging with compressed sensing and phase retrieval,” Opt. Lett. 33(9), 974–976 (2008). [CrossRef] [PubMed]
  2. H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007). [CrossRef] [PubMed]
  3. I. Ibraheem, N. Krumbholz, D. Mittleman, M. Koch, “Low-dispersive dielectric mirrors for future wireless terahertz communication systems,” IEEE Microwave Wireless Compon. Lett. 18(1), 67–69 (2008). [CrossRef]
  4. H. Zhang, P. Guo, P. Chen, S. Chang, J. Yuan, “Liquid-crystal-filled photonic crystal for terahertz switch and filter,” J. Opt. Soc. Am. B 26(1), 101–106 (2009). [CrossRef]
  5. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012). [CrossRef] [PubMed]
  6. L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013). [CrossRef]
  7. F. Fan, S. Chen, X.-H. Wang, S.-J. Chang, “Tunable nonreciprocal terahertz transmission and enhancement based on metal/magneto-optic plasmonic lens,” Opt. Express 21(7), 8614–8621 (2013). [CrossRef] [PubMed]
  8. F. Fan, W.-H. Gu, X.-H. Wang, S.-J. Chang, “Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array,” Appl. Phys. Lett. 102(12), 121113 (2013). [CrossRef]
  9. C. F. Hsieh, R. P. Pan, T. T. Tang, H. L. Chen, C. L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate,” Opt. Lett. 31(8), 1112–1114 (2006). [CrossRef] [PubMed]
  10. Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Y.-S. Xie, K. Chen, Y.-L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010). [CrossRef]
  11. F. Fan, W.-H. Gu, S. Chen, X.-H. Wang, S.-J. Chang, “State conversion based on terahertz plasmonics with vanadium dioxide coating controlled by optical pumping,” Opt. Lett. 38(9), 1582–1584 (2013). [CrossRef] [PubMed]
  12. J. Gómez Rivas, C. Janke, P. H. Bolivar, H. Kurz, “Transmission of THz radiation through InSb gratings of subwavelength apertures,” Opt. Express 13(3), 847–859 (2005). [CrossRef] [PubMed]
  13. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006). [CrossRef] [PubMed]
  14. I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012). [CrossRef] [PubMed]
  15. G. Armelles, A. Cebollada, A. García-Martín, M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1(1), 10–35 (2013). [CrossRef]
  16. M. Shalaby, M. Peccianti, Y. Ozturk, R. Morandotti, “A magnetic non-reciprocal isolator for broadband terahertz operation,” Nat. Commun. 4, 1558 (2013). [CrossRef] [PubMed]
  17. M. Shalaby, M. Peccianti, Y. Ozturk, M. Clerici, I. Al-Naib, L. Razzari, T. Ozaki, A. Mazhorova, M. Skorobogatiy, R. Morandotti, “Terahertz Faraday rotation in a magnetic liquid: High magneto-optical figure of merit and broadband operation in a ferrofluid,” Appl. Phys. Lett. 100(24), 241107 (2012). [CrossRef]
  18. C. Y. Chen, C. F. Hsieh, Y. F. Lin, R. P. Pan, C. L. Pan, “Magnetically tunable room-temperature 2 π liquid crystal terahertz phase shifter,” Opt. Express 12(12), 2625–2630 (2004). [CrossRef] [PubMed]
  19. F. Fan, S. Chen, W. Lin, Y.-P. Miao, S. J. Chang, B. Liu, X. H. Wang, L. Lin, “Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals,” Appl. Phys. Lett. 103(16), 161115 (2013). [CrossRef]
  20. A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, L. W. Molenkamp, “Giant magneto-optical Faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett. 106(10), 107404 (2011). [CrossRef] [PubMed]
  21. Q. H. Yang, H. W. Zhang, Y. L. Liu, Q. Y. Wen, J. Zha, “An artificially garnet crystal materials using in terahertz waveguide,” Chin. Phys. Lett. 25(11), 3957–3960 (2008). [CrossRef]
  22. S. Yang, J. Chieh, H. E. Hornga, C. Y. Hong, H. C. Yang, “Origin and applications of magnetically tunable refractive indexof magnetic fluid films,” Appl. Phys. Lett. 84(25), 5204 (2004). [CrossRef]
  23. Z. Y. Di, X. F. Chen, S. L. Pu, X. Hu, Y. X. Xia, “Magnetic-field-induced birefringence and particle agglomeration in magnetic fluids,” Appl. Phys. Lett. 89(21), 211106 (2006). [CrossRef]
  24. W. Lin, Y. Miao, H. Zhang, B. Liu, Y. Liu, B. Song, “Fiber-optic in-line magnetic field sensor based on the magnetic fluid and multimode interference effects,” Appl. Phys. Lett. 103(15), 151101 (2013). [CrossRef]
  25. Y. Chen, Q. Han, T. Liu, X. Lan, H. Xiao, “Optical fiber magnetic field sensor based on single-mode-multimode-single-mode structure and magnetic fluid,” Opt. Lett. 38(20), 3999–4001 (2013). [CrossRef] [PubMed]
  26. M. Ding, M. N. Zervas, G. Brambilla, “A compact broadband microfiber Bragg grating,” Opt. Express 19(16), 15621–15626 (2011). [CrossRef] [PubMed]
  27. P. Jepsen, B. Fischer, A. Thoman, H. Helm, J. Suh, R. Lopez, R. Haglund, “Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy,” Phys. Rev. B 74(20), 205103 (2006). [CrossRef]
  28. K. Q. Zhang and D. J. Li, Electromagnetic Theory for Microwaves and Optoelectronics (Springer, 2008), pp. 535–560.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited