OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 6329–6338

Compression of ultra-long microwave pulses using programmable microwave photonic phase filtering with > 100 complex-coefficient taps

Minhyup Song, Victor Torres-Company, Rui Wu, Andrew J. Metcalf, and Andrew M. Weiner  »View Author Affiliations


Optics Express, Vol. 22, Issue 6, pp. 6329-6338 (2014)
http://dx.doi.org/10.1364/OE.22.006329


View Full Text Article

Enhanced HTML    Acrobat PDF (3274 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Microwave photonic filters with arbitrary phase response can be achieved by merging high-repetition-rate electro-optic frequency comb technology with line-by-line pulse shaping. When arranged in an interferometric configuration, the filter features a number of programmable complex-coefficient taps equal to the number of available comb lines. In this work, we use an ultrabroadband comb generator resulting in a microwave photonic phase filter with >100 complex-coefficient taps. We demonstrate the potential of this filter by performing programmable chirp control of ultrawideband waveforms that extend over long (>10 ns) temporal apertures. This work opens new possibilities for compensating realistic linear distortion impairments on ultrabroadband wireless signals spanning over dozens of nanosecond temporal apertures.

© 2014 Optical Society of America

OCIS Codes
(100.5090) Image processing : Phase-only filters
(320.5520) Ultrafast optics : Pulse compression
(320.5540) Ultrafast optics : Pulse shaping
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(060.5625) Fiber optics and optical communications : Radio frequency photonics
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Optoelectronics

History
Original Manuscript: November 25, 2013
Revised Manuscript: January 24, 2014
Manuscript Accepted: January 24, 2014
Published: March 11, 2014

Citation
Minhyup Song, Victor Torres-Company, Rui Wu, Andrew J. Metcalf, and Andrew M. Weiner, "Compression of ultra-long microwave pulses using programmable microwave photonic phase filtering with > 100 complex-coefficient taps," Opt. Express 22, 6329-6338 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-6-6329


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. P. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009). [CrossRef]
  2. J. Capmany, B. Ortega, D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006). [CrossRef]
  3. B. Ortega, J. L. Cruz, J. Capmany, M. V. Andres, D. Pastor, “Variable delay line for phased-antenna based on a chirped fiber grating,” IEEE Trans. Microw. Theory Tech. 48(8), 1352–1360 (2000). [CrossRef]
  4. Y. Liu, J. Yang, J. Yao, “Cotinuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” IEEE Photon. Technol. Lett. 14(8), 1172–1174 (2002). [CrossRef]
  5. D. B. Hunter, M. E. Parker, J. L. Dexter, “Demonstration of a continuously variable true-time delay beamformer using a multichannel chirped fiber grating,” IEEE Trans. Microw. Theory Tech. 54(2), 861–867 (2006). [CrossRef]
  6. S. Xiao, A. M. Weiner, “Programmable photonic microwave filters with arbitrary ulra-wideband phase response,” IEEE Trans. Microw. Theory Tech. 54(11), 4002–4008 (2006). [CrossRef]
  7. J. G. Proakis, Digital Communications, 4th ed., (McGraw-Hill, 2001).
  8. P. Tortoli, F. Guidi, C. Atzeni, “Digital vs SAW matched filter implementation for radar pulse compression,” Proc. IEEE Ultrason. Symp.1, 199–202 (1994). [CrossRef]
  9. J. D. McKinney, A. M. Weiner, “Compensation of the effects of antenna dispersion on UWB waveforms via optical pulse shaping techniques,” IEEE Trans. Microw. Theory Tech. 54(4), 1681–1686 (2006). [CrossRef]
  10. M. Bolea, J. Mora, B. Ortega, J. Capmany, “Highly chirped single-bandpass microwave photonic filter with reconfiguration capabilities,” Opt. Express 19(5), 4566–4576 (2011). [CrossRef] [PubMed]
  11. M. Li, A. Malacarne, N. Belhadj, S. LaRochelle, J. Yao, J. Azana, “Reconfigurable and single-shot chirped microwave pulse compression using a time-spectrum convolution system,” postdeadline paper, IEEE Microwave Photonics Conference (2011).
  12. E. Hamidi, A. M. Weiner, “Post-compensation of ultra-wideband antenna dispersion using microwave photonic phase filters and its applications to UWB systems,” IEEE Trans. Microw. Theory Tech. 57(4), 890–898 (2009). [CrossRef]
  13. E. Hamidi, A. M. Weiner, “Phase-only matched filtering ultrawideband arbitrary microwave waveforms via optical pulse shaping,” J. Lightwave Technol. 26(15), 2355–2363 (2008). [CrossRef]
  14. M. Sagues, A. Loayssa, J. Capmany, “Multi-tap complex-coefficient incoherent microwave photonic filters based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 19(16), 1194–1196 (2007). [CrossRef]
  15. T. Mengual, B. Vidal, J. Marti, “Continuously tunable photonic microwave filter based on a spatial light modulator,” Opt. Commun. 281(10), 2746–2749 (2008). [CrossRef]
  16. X. Yi, T. X. H. Huang, R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Tech. 58(11), 3088–3093 (2010). [CrossRef]
  17. Y. Dai, J. P. Yao, “Nonuniformly-spaced photonic microwave delayline filter,” Opt. Express 16(7), 4713–4718 (2008). [CrossRef] [PubMed]
  18. E. Hamidi, D. E. Leaird, A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010). [CrossRef]
  19. M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency comb,” IEEE Photon. Technol. Lett. 23(21), 1618–1620 (2011). [CrossRef]
  20. V. Torres-Company, J. Lancis, P. Andrés, “Lossless equalization of frequency combs,” Opt. Lett. 33(16), 1822–1824 (2008). [CrossRef] [PubMed]
  21. Z. Jiang, D. S. Seo, D. E. Leaird, A. M. Weiner, “Spectral line-by-line pulse shaping,” Opt. Lett. 30(12), 1557–1559 (2005). [CrossRef] [PubMed]
  22. M. Song, V. Torres-Company, A. J. Metcalf, A. M. Weiner, “Multitap microwave photonic filters with programmable phase response via optical frequency comb shaping,” Opt. Lett. 37(5), 845–847 (2012). [CrossRef] [PubMed]
  23. V. Ataie, B. P.-P. Kuo, E. Myslivets, S. Radic, “Generation of 1500-tone, 120 nm-wide ultraflat frequency comb by single CW source,” postdeadline paper, Optical Fiber Communication Conference (OFC) (2013).
  24. A. J. Metcalf, V. Torres-Company, D. E. Leaird, A. M. Weiner, “High-Power Broadly Tunable Electro-Optic Frequency Comb Generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 231 (2013), doi:. [CrossRef]
  25. C. B. Huang, S. G. Park, D. E. Leaird, A. M. Weiner, “Nonlinearly broadened phase-modulated continuous-wave laser frequency combs characterized using DPSK decoding,” Opt. Express 16(4), 2520–2527 (2008). [CrossRef] [PubMed]
  26. C. Finot, B. Kibler, L. Provost, S. Wabnitz, “Beneficial impact of wave-breaking for coherent continuum generation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B 25(11), 1938–1948 (2008). [CrossRef]
  27. R. Wu, V. Torres-Company, D. E. Leaird, A. M. Weiner, “Supercontinuum-based 10-GHz flat-topped Optical Frequency Comb Generation,” Opt. Express 21(5), 6045–6052 (2013). [CrossRef] [PubMed]
  28. A. M. Weiner, Ultrafast Optics (Wiley Interscience, 2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited