OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 6381–6390

Phase-matched second harmonic generation at the Dirac point of a 2-D photonic crystal.

Nadia Mattiucci, Mark J. Bloemer, and Giuseppe D’Aguanno  »View Author Affiliations

Optics Express, Vol. 22, Issue 6, pp. 6381-6390 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2854 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study second harmonic generation in a 2-D photonic crystal with the pump field tuned at the Dirac point of the structure. The simultaneous generation of both forward and backward phase-matched second harmonic is achieved by exploiting a peculiar regime in which the interacting waves have zero phase velocity in the lattice. This regime can be attained even when strong material dispersion is present and therefore lends itself well to be implemented in semiconductor-based frequency conversion devices. A comparison between this method and the quasi-phase-matching technique is also presented.

© 2014 Optical Society of America

OCIS Codes
(160.0160) Materials : Materials
(230.4320) Optical devices : Nonlinear optical devices
(160.5298) Materials : Photonic crystals

ToC Category:
Nonlinear Optics

Original Manuscript: January 13, 2014
Revised Manuscript: February 21, 2014
Manuscript Accepted: February 24, 2014
Published: March 11, 2014

Nadia Mattiucci, Mark J. Bloemer, and Giuseppe D’Aguanno, "Phase-matched second harmonic generation at the Dirac point of a 2-D photonic crystal.," Opt. Express 22, 6381-6390 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. A. Franken, A. E. Hill, C. W. Peters, G. Weinreich, “Generation of Optical Harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961). [CrossRef]
  2. J. A. Giordmaine, “Mixing of Light Beams in Crystals,” Phys. Rev. Lett. 8(1), 19–20 (1962). [CrossRef]
  3. P. D. Maker, R. W. Terhune, M. Nisenoff, C. M. Savage, “Effects of Dispersion and Focusing on the Production of Optical Harmonics,” Phys. Rev. Lett. 8(1), 21–22 (1962). [CrossRef]
  4. M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, “Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992). [CrossRef]
  5. G. D’Aguanno, N. Mattiucci, M. J. Bloemer, M. Scalora, “Large Enhancement of Interface Second-Harmonic Generation Near the Zero-n Gap of a Negative-Index Bragg Grating,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(3), 036603 (2006). [CrossRef] [PubMed]
  6. G. D’Aguanno, N. Mattiucci, M. Scalora, M. J. Bloemer, “Second-Harmonic Generation at Angular Incidence in a Negative-Positive Index Photonic Band-Gap Structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(2), 026608 (2006). [CrossRef] [PubMed]
  7. M. A. Vincenti, D. de Ceglia, J. W. Haus, M. Scalora, “Harmonic generation in multiresonant plasma films,” Phys. Rev. A 88(4), 043812 (2013). [CrossRef]
  8. D. de Ceglia, S. Campione, M. A. Vincenti, F. Capolino, M. Scalora, “Low-damping epsilon-near-zero slabs: Nonlinear and nonlocal optical properties,” Phys. Rev. B 87(15), 155140 (2013). [CrossRef]
  9. H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, X. Zhang, “Phase Mismatch-Free Nonlinear Propagation in Optical Zero-Index Materials,” Science 342(6163), 1223–1226 (2013). [CrossRef] [PubMed]
  10. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  11. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987). [CrossRef] [PubMed]
  12. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals, Molding the Flow of Light. (Princeton University, 1995).
  13. J. M. Lourtioz, H. Benisty, V. Berger, J.-M. Gérard, D. Maystre, and A. Tchelnokov, Photonic Crystals, (Springer, 2005).
  14. Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, 2003).
  15. N. Bloembergen, A. J. Sieveres, “Nonlinear Optical Properties of Periodic Laminar Structures,” Appl. Phys. Lett. 17(11), 483–486 (1970). [CrossRef]
  16. C. L. Tang, P. P. Bey, “Phase Matching in Second-Harmonic Generation Using Artificial Periodic Structures,” IEEE J. Quantum Electron. 9(1), 9–17 (1973). [CrossRef]
  17. J. P. van der Ziel, M. Ilegems, “Optical second harmonic generation in periodic multilayer GaAs-Al0.3Ga0.7As structures,” Appl. Phys. Lett. 28(8), 437–439 (1976). [CrossRef]
  18. C. M. Bowden, A. M. Zheltikov, “Nonlinear Optics of Photonic Crystals,” J. Opt. Soc. Am. B 19(9), 2046–2048 (2002). [CrossRef]
  19. E. Centeno, “Second-harmonic superprism effect in photonic crystals,” Opt. Lett. 30(9), 1054–1056 (2005). [CrossRef] [PubMed]
  20. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005). [CrossRef] [PubMed]
  21. A. H. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009). [CrossRef]
  22. F. D. M. Haldane, S. Raghu, “Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry,” Phys. Rev. Lett. 100(1), 013904 (2008). [CrossRef] [PubMed]
  23. S. Raghu, F. D. M. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78(3), 033834 (2008). [CrossRef]
  24. R. A. Sepkhanov, Ya. B. Bazaliy, C. W. J. Beenakker, “Extremal transmission at the Dirac point of a photonic band structure,” Phys. Rev. A 75(6), 063813 (2007). [CrossRef]
  25. X. Zhang, “Observing Zitterbewegung for Photons near the Dirac Point of a Two-Dimensional Photonic Crystal,” Phys. Rev. Lett. 100(11), 113903 (2008). [CrossRef] [PubMed]
  26. M. Diem, T. Koschny, C. M. Soukoulis, “Transmission in the vicinity of the Dirac point in hexagonal photonic crystals,” Physica B 405(14), 2990–2995 (2010). [CrossRef]
  27. X. Huang, Y. Lai, Z. H. Hang, H. Zheng, C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011). [CrossRef] [PubMed]
  28. K. Sakoda, “Double Dirac cones in triangular-lattice metamaterials,” Opt. Express 20(9), 9925–9939 (2012). [CrossRef] [PubMed]
  29. G. D’Aguanno, N. Mattiucci, C. Conti, M. J. Bloemer, “Field localization and enhancement near the Dirac point of a finite defectless photonic crystal,” Phys. Rev. B 87(8), 085135 (2013). [CrossRef]
  30. N. Mattiucci, M. J. Bloemer, G. D’Aguanno, “All-optical bistability and switching near the Dirac point of a 2-D photonic crystal,” Opt. Express 21(10), 11862–11868 (2013). [CrossRef] [PubMed]
  31. Handbook of Optical Constants of Solids, E. D. Palik ed. (Academic Inc., 1991).
  32. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13(5), 1024–1035 (1996). [CrossRef]
  33. B. Gralak, S. Enoch, G. Tayeb, “Anomalous refractive properties of photonic crystals,” J. Opt. Soc. Am. A 17(6), 1012–1020 (2000). [CrossRef] [PubMed]
  34. G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, M. Bertolotti, M. J. Bloemer, C. M. Bowden, “Generalized coupled-mode theory for χ(2) interactions in finite multilayered structures,” J. Opt. Soc. Am. B 19(9), 2111–2121 (2002). [CrossRef]
  35. N. Mattiucci, G. D’Aguanno, M. Scalora, M. J. Bloemer, “Coherence Length during a SH Generation Process in Nonlinear, One-Dimensional, Finite, Multilayered Structures,” J. Opt. Soc. Am. B 24, 877–886 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (10076 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited