OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 6453–6463

High-resolution long-reach distributed Brillouin sensing based on combined time-domain and correlation-domain analysis

David Elooz, Yair Antman, Nadav Levanon, and Avi Zadok  »View Author Affiliations


Optics Express, Vol. 22, Issue 6, pp. 6453-6463 (2014)
http://dx.doi.org/10.1364/OE.22.006453


View Full Text Article

Enhanced HTML    Acrobat PDF (1367 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new scheme for distributed Brillouin sensing of strain and temperature in optical fibers is proposed, analyzed and demonstrated experimentally. The technique combines between time-domain and correlation-domain analysis. Both Brillouin pump and signal waves are repeatedly co-modulated by a relatively short, high-rate phase sequence, which introduces Brillouin interactions in a large number of discrete correlation peaks. In addition, the pump wave is also modulated by a single amplitude pulse, which leads to a temporal separation between the generation of different peaks. The Brillouin amplification of the signal wave at individual peak locations is resolved in the time domain. The technique provides the high spatial resolution and long range of unambiguous measurement offered by correlation-domain Brillouin analysis, together with reduced acquisition time through the simultaneous interrogation of a large number of resolution points. In addition, perfect Golomb codes are used in the phase modulation of the two waves instead of random sequences, in order to reduce noise due to residual, off-peak Brillouin interactions. The principle of the method is supported by extensive numerical simulations. Using the proposed scheme, the Brillouin gain spectrum is mapped experimentally along a 400 m-long fiber under test with a spatial resolution of 2 cm, or 20,000 resolution points, with only 127 scans per choice of frequency offset between pump and signal. Compared with corresponding phase-coded, Brillouin correlation domain analysis schemes with equal range and resolution, the acquisition time is reduced by a factor of over 150. A 5 cm-long hot spot, located towards the output end of the pump wave, is properly identified in the measurements. The method represents a significant advance towards practical high-resolution and long range Brillouin sensing systems.

© 2014 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(290.5900) Scattering : Scattering, stimulated Brillouin
(190.2055) Nonlinear optics : Dynamic gratings

ToC Category:
Sensors

History
Original Manuscript: November 28, 2013
Revised Manuscript: February 10, 2014
Manuscript Accepted: February 14, 2014
Published: March 12, 2014

Citation
David Elooz, Yair Antman, Nadav Levanon, and Avi Zadok, "High-resolution long-reach distributed Brillouin sensing based on combined time-domain and correlation-domain analysis," Opt. Express 22, 6453-6463 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-6-6453


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  2. A. Zadok, A. Eyal, M. Tur, “Stimulated Brillouin scattering slow light in optical fibers [Invited],” Appl. Opt. 50(25), E38–E49 (2011). [CrossRef]
  3. T. Kurashima, T. Horiguchi, M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15(18), 1038–1040 (1990). [CrossRef] [PubMed]
  4. T. Horiguchi, T. Kurashima, M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photonics Technol. Lett. 2(5), 352–354 (1990). [CrossRef]
  5. M. Niklès, L. Thévenaz, P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21(10), 758–760 (1996). [CrossRef] [PubMed]
  6. X. Bao, L. A. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(4), 4152–4187 (2011). [CrossRef] [PubMed]
  7. S. Martin-Lopez, M. Alcon-Camas, F. Rodriguez, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, M. Gonzalez-Herraez, “Brillouin optical time-domain analysis assisted by second-order Raman amplification,” Opt. Express 18(18), 18769–18778 (2010). [CrossRef] [PubMed]
  8. M. A. Soto, G. Bolognini, F. Di Pasquale, “Long-range simplex-coded BOTDA sensor over 120 km distance employing optical preamplification,” Opt. Lett. 36(2), 232–234 (2011). [CrossRef] [PubMed]
  9. M. A. Soto, G. Bolognini, F. Di Pasquale, “Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification,” Opt. Express 19(5), 4444–4457 (2011). [CrossRef] [PubMed]
  10. Y. Dong, L. Chen, X. Bao, “Time-division multiplexing-based BOTDA over 100 km sensing length,” Opt. Lett. 36(2), 277–279 (2011). [CrossRef] [PubMed]
  11. Y. Peled, A. Motil, L. Yaron, M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Opt. Express 19(21), 19845–19854 (2011). [CrossRef] [PubMed]
  12. Y. Peled, A. Motil, M. Tur, “Fast Brillouin optical time domain analysis for dynamic sensing,” Opt. Express 20(8), 8584–8591 (2012). [CrossRef] [PubMed]
  13. Y. Peled, A. Motil, I. Kressel, M. Tur, “Monitoring the propagation of mechanical waves using an optical fiber distributed and dynamic strain sensor based on BOTDA,” Opt. Express 21(9), 10697–10705 (2013). [CrossRef] [PubMed]
  14. A. Fellay, L. Thevenaz, M. Facchini, M. Nikles, and P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in 12th International Conference on Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), paper OWD3.
  15. J. C. Beugnot, M. Tur, S. F. Mafang, L. Thévenaz, “Distributed Brillouin sensing with sub-meter spatial resolution: modeling and processing,” Opt. Express 19(8), 7381–7397 (2011). [CrossRef] [PubMed]
  16. V. Lecoeuche, D. J. Webb, C. N. Pannell, D. A. Jackson, “Transient response in high-resolution Brillouin-based distributed sensing using probe pulses shorter than the acoustic relaxation time,” Opt. Lett. 25(3), 156–158 (2000). [CrossRef] [PubMed]
  17. F. Wang, X. Bao, L. Chen, Y. Li, J. Snoddy, X. Zhang, “Using pulse with a dark base to achieve high spatial and frequency resolution for the distributed Brillouin sensor,” Opt. Lett. 33(22), 2707–2709 (2008). [CrossRef] [PubMed]
  18. A. W. Brown, B. G. Colpitts, K. Brown, “Distributed sensor based on dark-pulse Brillouin scattering,” IEEE Photonics Technol. Lett. 17(7), 1501–1503 (2005). [CrossRef]
  19. L. Thévenaz, S. F. Mafang, “Distributed fiber sensing using Brillouin echoes,” Proc. SPIE 7004, 70043N (2008).
  20. S. Foaleng Mafang, M. Tur, J. C. Beugnot, L. Thevenaz, “High spatial and spectral resolution long-range sensing using Brillouin echoes,” J. Lightwave Technol. 28(20), 2993–3003 (2010). [CrossRef]
  21. W. Li, X. Bao, Y. Li, L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16(26), 21616–21625 (2008). [CrossRef] [PubMed]
  22. T. Sperber, A. Eyal, M. Tur, L. Thévenaz, “High spatial resolution distributed sensing in optical fibers by Brillouin gain-profile tracing,” Opt. Express 18(8), 8671–8679 (2010). [CrossRef] [PubMed]
  23. Y. Dong, H. Zhang, L. Chen, X. Bao, “2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair,” Appl. Opt. 51(9), 1229–1235 (2012). [CrossRef] [PubMed]
  24. Y. Antman, N. Levanon, A. Zadok, “Low-noise delays from dynamic Brillouin gratings based on perfect Golomb coding of pump waves,” Opt. Lett. 37(24), 5259–5261 (2012). [CrossRef] [PubMed]
  25. K. Hotate, T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-proposal, experiment and simulation,” IEICE Trans. Electron. E83-C(3), 405–412 (2000).
  26. K. Y. Song, Z. He, K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006). [CrossRef] [PubMed]
  27. W. Zou, Z. He, K. Hotate, “Range elongation of distributed discrimination of strain and temperature in Brillouin optical correlation-domain analysis based on dual frequency modulations,” IEEE Sens. J. 14(1), 244–248 (2014). [CrossRef]
  28. J. H. Jeong, K. Lee, K. Y. Song, J. M. Jeong, S. B. Lee, “Differential measurement scheme for Brillouin Optical Correlation Domain Analysis,” Opt. Express 20(24), 27094–27101 (2012). [CrossRef] [PubMed]
  29. A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, L. Thevenaz, “Random-access distributed fiber sensing,” Laser Photonics Rev. 6(5), L1–L5 (2012).
  30. Y. Antman, N. Primerov, J. Sancho, L. Thevenaz, A. Zadok, “Localized and stationary dynamic gratings via stimulated Brillouin scattering with phase modulated pumps,” Opt. Express 20(7), 7807–7821 (2012). [CrossRef] [PubMed]
  31. Y. Antman, L. Yaron, T. Langer, M. Tur, N. Levanon, A. Zadok, “Experimental demonstration of localized Brillouin gratings with low off-peak reflectivity established by perfect Golomb codes,” Opt. Lett. 38(22), 4701–4704 (2013). [CrossRef] [PubMed]
  32. A. Denisov, M. A. Soto, L. Thévenaz, “Time gated phase-correlation distributed Brillouin fiber sensor,” Proc. SPIE 8794, 87943I (2013).
  33. A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited