OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 6519–6525

Wide-angle polarization-insensitive transparency of a continuous opaque metal film for near-infrared light

Zhengyong Song and Baile Zhang  »View Author Affiliations


Optics Express, Vol. 22, Issue 6, pp. 6519-6525 (2014)
http://dx.doi.org/10.1364/OE.22.006519


View Full Text Article

Enhanced HTML    Acrobat PDF (1891 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Here we show that a continuous highly conducting metal film can be made transparent for wide-angle and polarization-insensitive incidence of near-infrared light by depositing periodic metal patches on top of the metal film. Based on the optimized computations, the whole system could suppress the reflection and enhance the transmission. This design of transparent metal film can be useful in applications, such as optoelectronic electrodes, solar cells, and micro-electronic displays, where both high electrical conductivity and high optical transmittance are desirable.

© 2014 Optical Society of America

OCIS Codes
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Plasmonics

History
Original Manuscript: November 20, 2013
Revised Manuscript: January 7, 2014
Manuscript Accepted: January 14, 2014
Published: March 13, 2014

Citation
Zhengyong Song and Baile Zhang, "Wide-angle polarization-insensitive transparency of a continuous opaque metal film for near-infrared light," Opt. Express 22, 6519-6525 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-6-6519


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. B. H. Tahar, T. Ban, Y. Ohya, Y. Takahashi, “Tin doped indium oxide thin films: electrical properties,” J. Appl. Phys. 83(5), 2631–2645 (1998). [CrossRef]
  2. M. ven Exter, D. Grischkowsky, “Carrier dynamics of electrons and holes in moderately doped silicon,” Phys. Rev. B Condens. Matter 41(17), 12140–12149 (1990).
  3. M. G. Kang, M. S. Kim, J. Kim, L. J. Guo, “Organic solar cells using nanoimprinted transparent metal electrodes,” Adv. Mater. 20(23), 4408–4413 (2008). [CrossRef]
  4. J. Y. Lee, S. T. Connor, Y. Cui, P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008). [CrossRef] [PubMed]
  5. A. Boltasseva, H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011). [CrossRef] [PubMed]
  6. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  7. J. A. Porto, F. J. Garcia-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999). [CrossRef]
  8. L. Zhou, W. J. Wen, C. T. Chan, P. Sheng, “Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields,” Phys. Rev. Lett. 94(24), 243905 (2005). [CrossRef]
  9. J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005). [CrossRef] [PubMed]
  10. Z. Y. Song, Q. He, S. Y. Xiao, L. Zhou, “Making a continuous metal film transparent via scattering cancellations,” Appl. Phys. Lett. 101(18), 181110 (2012). [CrossRef]
  11. M. Elbahri, M. K. Hedayati, V. S. Kiran Chakravadhanula, M. Jamali, T. Strunkus, V. Zaporojtchenko, F. Faupel, “An omnidirectional transparent conducting-metal-based plasmonic nanocomposite,” Adv. Mater. 23(17), 1993–1997 (2011). [CrossRef] [PubMed]
  12. R. Malureanu, M. Zalkovskij, Z. Y. Song, C. Gritti, A. Andryieuski, Q. He, L. Zhou, P. U. Jepsen, A. V. Lavrinenko, “A new method for obtaining transparent electrodes,” Opt. Express 20(20), 22770–22782 (2012). [CrossRef] [PubMed]
  13. Z. Q. Liu, G. Q. Liu, X. S. Liu, K. Huang, Y. H. Chen, Y. Hu, G. L. Fu, “Tunable plasmon-induced transparency of double continuous metal films sandwiched with a plasmonic array,” Plasmonics 8(2), 1285–1292 (2013). [CrossRef]
  14. Z. Q. Liu, G. Q. Liu, H. Q. Zhou, X. S. Liu, K. Huang, Y. H. Chen, G. L. Fu, “Near-unity transparency of a continuous metal film via cooperative effects of double plasmonic arrays,” Nanotechnology 24(15), 155203 (2013). [CrossRef] [PubMed]
  15. J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010). [CrossRef]
  16. G. Biener, A. Niv, V. Kleiner, E. Hasman, “Metallic subwavelength structures for a broadband infrared absorption control,” Opt. Lett. 32(8), 994–996 (2007). [CrossRef] [PubMed]
  17. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  18. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099–1119 (1983). [CrossRef] [PubMed]
  19. H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451–6461 (1999). [CrossRef]
  20. N. P. Logeeswaran Vj, M. S. Kobayashi, W. Islam, P. Wu, N. X. Chaturvedi, S. Y. Fang, Wang, R. S. Williams, “Ultrasmooth silver thin films deposited with a germanium nucleation layer,” Nano Lett. 9(1), 178–182 (2009). [CrossRef] [PubMed]
  21. J. M. Phillips, R. J. Cava, G. A. Thomas, S. A. Carter, J. Kwo, T. Siegrist, J. J. Krajewski, J. H. Marshall, W. F. Peck, D. H. Rapkine, “Zinc-indium-oxide: A high conductivity transparent conducting oxide,” Appl. Phys. Lett. 67(15), 2246–2248 (1995). [CrossRef]
  22. M. Kerker, D. S. Wang, C. L. Giles, “Electromagnetic scattering by magnetic spheres,” J. Opt. Soc. Am. 73(6), 765–767 (1983). [CrossRef]
  23. J. M. Geffrin, B. Garcıa-Camara, R. Gomez-Medina, P. Albella, L. S. Froufe-Perez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012). [CrossRef]
  24. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013). [CrossRef] [PubMed]
  25. S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013). [PubMed]
  26. V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005). [CrossRef] [PubMed]
  27. Y. Zeng, H. T. Chen, D. A. R. Dalvit, “The role of magnetic dipoles and non-zero-order Bragg waves in metamaterial perfect absorbers,” Opt. Express 21(3), 3540–3546 (2013). [CrossRef] [PubMed]
  28. S. Mühlig, C. Menzel, C. Rockstuhl, F. Lederer, “Multipole analysis of meta-atoms,” Metamaterials 5(2–3), 64–73 (2011). [CrossRef]
  29. H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010). [CrossRef] [PubMed]
  30. H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited