OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 6535–6546

Integrated frequency comb source of heralded single photons

Christian Reimer, Lucia Caspani, Matteo Clerici, Marcello Ferrera, Michael Kues, Marco Peccianti, Alessia Pasquazi, Luca Razzari, Brent E. Little, Sai T. Chu, David J. Moss, and Roberto Morandotti  »View Author Affiliations

Optics Express, Vol. 22, Issue 6, pp. 6535-6546 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1780 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report an integrated photon pair source based on a CMOS-compatible microring resonator that generates multiple, simultaneous, and independent photon pairs at different wavelengths in a frequency comb compatible with fiber communication wavelength division multiplexing channels (200 GHz channel separation) and with a linewidth that is compatible with quantum memories (110 MHz). It operates in a self-locked pump configuration, avoiding the need for active stabilization, making it extremely robust even at very low power levels.

© 2014 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(270.0270) Quantum optics : Quantum optics
(270.5568) Quantum optics : Quantum cryptography

ToC Category:
Integrated Optics

Original Manuscript: December 20, 2013
Revised Manuscript: February 19, 2014
Manuscript Accepted: February 19, 2014
Published: March 13, 2014

Christian Reimer, Lucia Caspani, Matteo Clerici, Marcello Ferrera, Michael Kues, Marco Peccianti, Alessia Pasquazi, Luca Razzari, Brent E. Little, Sai T. Chu, David J. Moss, and Roberto Morandotti, "Integrated frequency comb source of heralded single photons," Opt. Express 22, 6535-6546 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008). [CrossRef] [PubMed]
  2. A. Politi, J. C. F. Matthews, J. L. O’Brien, “Shor’s quantum factoring algorithm on a photonic chip,” Science 325(5945), 1221 (2009). [CrossRef] [PubMed]
  3. J. L. O’Brien, A. Furusawa, J. Vučković, “Photonic quantum technologies,” Nature Phot. 3(12), 687–695 (2009). [CrossRef]
  4. H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, S. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91(20), 201108 (2007). [CrossRef]
  5. E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11(11), 113042 (2009). [CrossRef]
  6. S. Clemmen, K. Phan Huy, W. Bogaerts, R. G. Baets, Ph. Emplit, S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express 17(19), 16558–16570 (2009). [CrossRef] [PubMed]
  7. J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, Ch. Marquardt, G. Leuchs, “Quantum light from a whispering-gallery-mode disk resonator,” Phys. Rev. Lett. 106(11), 113901 (2011). [CrossRef] [PubMed]
  8. S. Azzini, D. Grassani, M. J. Strain, M. Sorel, L. G. Helt, J. E. Sipe, M. Liscidini, M. Galli, D. Bajoni, “Ultra-low power generation of twin photons in a compact silicon ring resonator,” Opt. Express 20(21), 23100–23107 (2012). [CrossRef] [PubMed]
  9. R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, G. Weihs, “Monolithic source of photon pairs,” Phys. Rev. Lett. 108(15), 153605 (2012). [CrossRef] [PubMed]
  10. N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012). [CrossRef] [PubMed]
  11. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003). [CrossRef] [PubMed]
  12. L. G. Helt, Z. Yang, M. Liscidini, J. E. Sipe, “Spontaneous four-wave mixing in microring resonators,” Opt. Lett. 35(18), 3006–3008 (2010). [CrossRef] [PubMed]
  13. N. Sangouard, C. Simon, H. de Riedmatten, N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83(1), 33–80 (2011). [CrossRef]
  14. H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008). [CrossRef] [PubMed]
  15. B. Julsgaard, J. Sherson, J. Ignacio Cirac, J. Fiurášek, E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature 432(7016), 482–486 (2004). [CrossRef] [PubMed]
  16. Z. Ou, Y. Lu, “Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons,” Phys. Rev. Lett. 83(13), 2556–2559 (1999). [CrossRef]
  17. K. Garay-Palmett, Y. Jeronimo-Moreno, A. B. U’ren, “Theory of cavity-enhanced spontaneous four wave mixing,” Laser Phys. 23(1), 015201 (2013). [CrossRef]
  18. E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21(23), 27826–27834 (2013). [CrossRef] [PubMed]
  19. R. Kumar, J. R. Ong, J. Recchio, K. Srinivasan, S. Mookherjea, “Spectrally multiplexed and tunable-wavelength photon pairs at 1.55 μm from a silicon coupled-resonator optical waveguide,” Opt. Lett. 38(16), 2969–2971 (2013). [CrossRef] [PubMed]
  20. W.C. Jiang, X. Lu, J. Zhang, O. Painter, and Q. Lin, “A silicon-chip source of bright photon-pair comb,” arXiv 1210.4455, (2012).
  21. C.-S. Chuu, G. Y. Yin, S. E. Harris, “A miniature ultrabright source of temporally long, narrowband biphotons,” Appl. Phys. Lett. 101(5), 051108 (2012). [CrossRef]
  22. F. Monteiro, A. Martin, B. Sanguinetti, H. Zbinden, R.T. Thew, “Narrowband photon pair source for quantum networks,” Opt. Express 22(4), 4371–4378 (2014).
  23. J. Mower, F.N.C. Wong, J.H. Shapiro, and D. Englund, “Dense wavelength division multiplexed quantum key distribution using entangled photons,” arXiv 1110.4867, (2011).
  24. B. Fröhlich, J. F. Dynes, M. Lucamarini, A. W. Sharpe, Z. Yuan, A. J. Shields, “A quantum access network,” Nature 501(7465), 69–72 (2013). [CrossRef] [PubMed]
  25. T. Carmon, L. Yang, K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004). [CrossRef] [PubMed]
  26. P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, T. J. Kippenberg, “Full Stabilization of a Microresonator-Based Optical Frequency Comb,” Phys. Rev. Lett. 101(5), 053903 (2008). [CrossRef] [PubMed]
  27. D. J. Moss, R. Morandotti, A. L. Gaeta, M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nature Phot. 7(8), 597–607 (2013). [CrossRef]
  28. M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nature Phot. 2(12), 737–740 (2008). [CrossRef]
  29. M. Ferrera, D. Duchesne, L. Razzari, M. Peccianti, R. Morandotti, P. Cheben, S. Janz, D.-X. Xu, B. E. Little, S. Chu, D. J. Moss, “Low power four wave mixing in an integrated, micro-ring resonator with Q = 1.2 million,” Opt. Express 17(16), 14098–14103 (2009). [CrossRef] [PubMed]
  30. A. Pasquazi, L. Caspani, M. Peccianti, M. Clerici, M. Ferrera, L. Razzari, D. Duchesne, B. E. Little, S. T. Chu, D. J. Moss, R. Morandotti, “Self-locked optical parametric oscillation in a CMOS compatible microring resonator: a route to robust optical frequency comb generation on a chip,” Opt. Express 21(11), 13333–13341 (2013). [CrossRef] [PubMed]
  31. M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012). [CrossRef] [PubMed]
  32. I. Ali-Khan, C. J. Broadbent, J. C. Howell, “Large-Alphabet Quantum Key Distribution Using Energy-Time Entangled Bipartite States,” Phys. Rev. Lett. 98(6), 060503 (2007). [CrossRef] [PubMed]
  33. Y.-P. Huang, J. B. Altepeter, P. Kumar, “Heralding single photons without spectral factorability,” Phys. Rev. A 82(4), 043826 (2010). [CrossRef]
  34. E. Pomarico, B. Sanguinetti, T. Guerreiro, R. Thew, H. Zbinden, “MHz rate and efficient synchronous heralding of single photons at telecom wavelengths,” Opt. Express 20, 23846–23855 (2012).
  35. N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002). [CrossRef]
  36. U. Titulaer, R. Glauber, “Correlation Functions for Coherent Fields,” Phys. Rev. 140(3B), B676–B682 (1965). [CrossRef]
  37. C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469(7331), 508–511 (2011). [CrossRef] [PubMed]
  38. R. Loudon, The Quantum Theory of Light (Oxford University Press, 2000).
  39. Z.-Y. J. Ou, Multi-Photon Quantum Interference (Springer, 2007).
  40. M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M. V. Chekhova, C. Silberhorn, G. Leuchs, C. Marquardt, “A versatile source of single photons for quantum information processing,” Nat. Commun. 4, 1818 (2013). [CrossRef] [PubMed]
  41. S. Bettelli, “Comment on ‘Coherence measures for heralded single-photon sources’,” Phys. Rev. A 81(3), 037801 (2010). [CrossRef]
  42. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nature Phot. 4(1), 41–45 (2010). [CrossRef]
  43. S. Ramelow, L. Ratschbacher, A. Fedrizzi, N. K. Langford, A. Zeilinger, “Discrete Tunable Color Entanglement,” Phys. Rev. Lett. 103(25), 253601 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited