OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 6547–6561

General hyperentanglement concentration for photon systems assisted by quantum-dot spins inside optical microcavities

Bao-Cang Ren and Gui Lu Long  »View Author Affiliations


Optics Express, Vol. 22, Issue 6, pp. 6547-6561 (2014)
http://dx.doi.org/10.1364/OE.22.006547


View Full Text Article

Enhanced HTML    Acrobat PDF (1498 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Hyperentanglement is a promising resource in quantum information processing, especially for increasing the channel capacity of long-distance quantum communication. Here we present a general hyper-entanglement concentration protocol (hyper-ECP) for nonlocal partially hyperentangled Bell states that decay with the interrelationship between the polarization and the spatial-mode degrees of freedom of two-photon systems, which is not taken into account in other hyper-ECPs, resorting to the optical property of the quantum-dot spins inside one-side optical microcavities. We show that the success probability of our hyper-ECP is largely increased by iteration of the hyper-ECP process. Our hyper-ECP can be straightforwardly generalized to distill nonlocal maximally hyperentangled N-photon Greenberger-Horne-Zeilinger (GHZ) states from arbitrary partially hyperentangled GHZ-class states.

© 2014 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5580) Quantum optics : Quantum electrodynamics
(270.5565) Quantum optics : Quantum communications
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Quantum Optics

History
Original Manuscript: December 26, 2013
Revised Manuscript: February 3, 2014
Manuscript Accepted: February 15, 2014
Published: March 13, 2014

Citation
Bao-Cang Ren and Gui Lu Long, "General hyperentanglement concentration for photon systems assisted by quantum-dot spins inside optical microcavities," Opt. Express 22, 6547-6561 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-6-6547


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002). [CrossRef]
  2. A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett. 67, 661–663 (1991). [CrossRef] [PubMed]
  3. C. H. Bennett, G. Brassard, N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992). [CrossRef] [PubMed]
  4. X. H. Li, F. G. Deng, H. Y. Zhou, “Efficient quantum key distribution over a collective noise channel,” Phys. Rev. A 78, 022321 (2008). [CrossRef]
  5. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef] [PubMed]
  6. C. H. Bennett, S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992). [CrossRef] [PubMed]
  7. X. S. Liu, G. L. Long, D. M. Tong, F. Li, “General scheme for superdense coding between multiparties,” Phys. Rev. A 65, 022304 (2002). [CrossRef]
  8. M. Hillery, V. Bužek, A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999). [CrossRef]
  9. L. Xiao, G. L. Long, F. G. Deng, J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004). [CrossRef]
  10. G. L. Long, X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002). [CrossRef]
  11. F. G. Deng, G. L. Long, X. S. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,” Phys. Rev. A 68, 042317 (2003). [CrossRef]
  12. C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense codi,” Phys. Rev. A 71, 044305 (2005). [CrossRef]
  13. J. T. Barreiro, N. K. Langford, N. A. Peters, P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005). [CrossRef]
  14. M. Barbieri, C. Cinelli, P. Mataloni, F. De Martini, “Polarization-momentum hyperentangled states: realization and characterization,” Phys. Rev. A 72, 052110 (2005). [CrossRef]
  15. G. Vallone, R. Ceccarelli, F. De Martini, P. Mataloni, “Hyperentanglement of two photons in three degrees of freedom,” Phys. Rev. A 79, 030301 (2009). [CrossRef]
  16. J. T. Barreiro, T. C. Wei, P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nature Phys. 4, 282–286 (2008). [CrossRef]
  17. Y. B. Sheng, F. G. Deng, G. L. Long, “Complete hyperentangled-Bell-state analysis for quantum communication,” Phys. Rev. A 82, 032318 (2010). [CrossRef]
  18. B. C. Ren, H. R. Wei, M. Hua, T. Li, F. G. Deng, “Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,” Opt. Express 20, 24664–24677 (2012). [CrossRef] [PubMed]
  19. T. C. Wei, J. T. Barreiro, P. G. Kwiat, “Hyperentangled Bell-state analysis,” Phys. Rev. A 75, 060305 (2007). [CrossRef]
  20. N. Pisenti, C. P. E. Gaebler, T. W. Lynn, “Distinguishability of hyperentangled Bell states by linear evolution and local projective measurement,” Phys. Rev. A 84, 022340 (2011). [CrossRef]
  21. T. J. Wang, Y. Lu, G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities,” Phys. Rev. A 86, 042337 (2012). [CrossRef]
  22. B. C. Ren, H. R. Wei, F. G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by a quantum dot inside a one-side optical microcavity,” Laser phys. Lett. 10, 095202 (2013). [CrossRef]
  23. P. G. Kwiat, H. Weinfurter, “Embedded Bell-state analysis,” Phys. Rev. A 58, R2623–R2626 (1998). [CrossRef]
  24. S. P. Walborn, S. Pádua, C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,” Phys. Rev. A 68, 042313 (2003). [CrossRef]
  25. C. Schuck, G. Huber, C. Kurtsiefer, H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006). [CrossRef] [PubMed]
  26. M. Barbieri, G. Vallone, P. Mataloni, F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007). [CrossRef]
  27. T. J. Wang, S. Y. Song, G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85, 062311 (2012). [CrossRef]
  28. Y. B. Sheng, F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,” Phys. Rev. A 81, 032307 (2010). [CrossRef]
  29. Y. B. Sheng, F. G. Deng, “One-step deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A 82, 044305 (2010). [CrossRef]
  30. X. H. Li, “Deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A 82, 044304 (2010). [CrossRef]
  31. F. G. Deng, “One-step error correction for multipartite polarization entanglement,” Phys. Rev. A 83, 062316 (2011). [CrossRef]
  32. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996). [CrossRef] [PubMed]
  33. D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996). [CrossRef] [PubMed]
  34. J. W. Pan, C. Simon, Č. Brukner, A. Zeilinger, “Entanglement purification for quantum communication,” Nature 410, 1067–1070 (2001). [CrossRef] [PubMed]
  35. J. W. Pan, S. Gasparoni, R. Ursin, G. Weihs, A. Zeilinger, “Experimental entanglement purification of arbitrary unknown states,” Nature 423, 417–422 (2003). [CrossRef] [PubMed]
  36. C. Simon, J. W. Pan, “Polarization entanglement purification using spatial entanglement,” Phys. Rev. Lett. 89, 257901 (2002). [CrossRef] [PubMed]
  37. Y. B. Sheng, F. G. Deng, H. Y. Zhou, “Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity,” Phys. Rev. A 77, 042308 (2008). [CrossRef]
  38. C. Wang, Y. Zhang, R. Zhang, “Entanglement purification based on hybrid entangled state using quantum-dot and microcavity coupled system,” Opt. Express 19, 25685–25695 (2011). [CrossRef]
  39. C. Wang, Y. Zhang, G. S. Jin, “Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities,” Phys. Rev. A 84, 032307 (2011). [CrossRef]
  40. B. C. Ren, F. G. Deng, “Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities,” Laser phys. Lett. 10, 115201 (2013). [CrossRef]
  41. C. H. Bennett, H. J. Bernstein, S. Popescu, B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046–2052 (1996). [CrossRef] [PubMed]
  42. S. Bose, V. Vedral, P. L. Knight, “Purification via entanglement swapping and conserved entanglement,” Phys. Rev. A 60, 194–197 (1999). [CrossRef]
  43. Y. B. Sheng, L. Zhou, S. M. Zhao, B. Y. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,” Phys. Rev. A 85, 012307 (2012). [CrossRef]
  44. F. G. Deng, “Optimal nonlocal multipartite entanglement concentration based on projection measurements,” Phys. Rev. A 85, 022311 (2012). [CrossRef]
  45. L. Chen, “Comblike entangled spectrum for composite spin-orbit modes from hyperconcentration,” Phys. Rev. A 85, 012311 (2012). [CrossRef]
  46. B. C. Ren, F. F. Du, F. G. Deng, “Hyperentanglement concentration for two-photon four-qubit systems with linear optics,” Phys. Rev. A 88, 012302 (2013). [CrossRef]
  47. T. Yamamoto, M. Koashi, N. Imoto, “Concentration and purification scheme for two partially entangled photon pairs,” Phys. Rev. A 64, 012304 (2001). [CrossRef]
  48. Z. Zhao, J. W. Pan, M. S. Zhan, “Practical scheme for entanglement concentration,” Phys. Rev. A 64, 014301 (2001). [CrossRef]
  49. Y. B. Sheng, F. G. Deng, H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,” Phys. Rev. A 77, 062325 (2008). [CrossRef]
  50. R. J. Warburton, C. S. Dürr, K. Karrai, J. P. Kotthaus, G. Medeiros-Ribeiro, P. M. Petroff, “Charged excitons in self-assembled semiconductor quantum dots,” Phys. Rev. Lett. 79, 5282–5285 (1997). [CrossRef]
  51. C. Y. Hu, W. Ossau, D. R. Yakovlev, G. Landwehr, T. Wojtowicz, G. Karczewski, J. Kossut, “Optically detected magnetic resonance of excess electrons in type-I quantum wells with a low-density electron gas,” Phys. Rev. B 58, R1766–R1769 (1998). [CrossRef]
  52. D. F. Walls, G. J. Milburn, Quantum optics (Springer-Verlag, Berlin, 1994). [CrossRef]
  53. C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008). [CrossRef]
  54. G. Bester, S. Nair, A. Zunger, “Pseudopotential calculation of the excitonic fine structure of million-atom self-assembled In1−x Gax As/GaAs quantum dots,” Phys. Rev. B 67, 161306 (2003). [CrossRef]
  55. M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, F. Schäfer, “Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002). [CrossRef]
  56. J. J. Finley, D. J. Mowbray, M. S. Skolnick, A. D. Ashmore, C. Baker, A. F. G. Monte, M. Hopkinson, “Fine structure of charged and neutral excitons in InAs-Al0.6Ga0.4As quantum dots,” Phys. Rev. B 66, 153316 (2002). [CrossRef]
  57. P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001). [CrossRef] [PubMed]
  58. D. Birkedal, K. Leosson, J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401 (2001). [CrossRef] [PubMed]
  59. H. R. Wei, F. G. Deng, “Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity,” Opt. Express 21, 17671–17685 (2013). [CrossRef] [PubMed]
  60. H. R. Wei, F. G. Deng, “Universal quantum gates on electron-spin qubits with quantum dots inside single-side optical microcavities,” Opt. Express 22, 593–607 (2014). [CrossRef] [PubMed]
  61. W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, A. D. Wieck, “Radiatively limited dephasing in InAs quantum dots,” Phys. Rev. B 70, 033301 (2004). [CrossRef]
  62. D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J. Finley, D. V. Bulaev, D. Loss, “Observation of extremely slow hole spin relaxation in self-assembled quantum dots,” Phys. Rev. B 76, 241306 (2007). [CrossRef]
  63. B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature (London) 451, 441–444 (2008). [CrossRef]
  64. D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009). [CrossRef] [PubMed]
  65. C. Y. Hu, J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83, 115303 (2011). [CrossRef]
  66. H. J. Kimble, Cavity Quantum Electrodynamics (Academic, San Diego, 1994).
  67. C. Y. Hu, W. J. Munro, J. L. OBrien, J. G. Rarity, Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity, Phys. Rev. B 80, 205326 (2009). [CrossRef]
  68. C. Y. Hu, W. J. Munro, J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008). [CrossRef]
  69. A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011). [CrossRef]
  70. J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004). [CrossRef]
  71. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004). [CrossRef]
  72. S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited