OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 6586–6596

Surface angular momentum of light beams

Marco Ornigotti and Andrea Aiello  »View Author Affiliations

Optics Express, Vol. 22, Issue 6, pp. 6586-6596 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (719 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Traditionally, the angular momentum of light is calculated for “bullet-like” electromagnetic wave packets, although in actual optical experiments “pencil-like” beams of light are more commonly used. The fact that a wave packet is bounded transversely and longitudinally while a beam has, in principle, an infinite extent along the direction of propagation, renders incomplete the textbook calculation of the spin/orbital separation of the angular momentum of a light beam. In this work we demonstrate that a novel, extra surface part must be added in order to preserve the gauge invariance of the optical angular momentum per unit length. The impact of this extra term is quantified by means of two examples: a Laguerre-Gaussian and a Bessel beam, both circularly polarized.

© 2014 Optical Society of America

OCIS Codes
(260.0260) Physical optics : Physical optics
(260.2110) Physical optics : Electromagnetic optics
(260.6042) Physical optics : Singular optics

ToC Category:
Physical Optics

Original Manuscript: January 22, 2014
Revised Manuscript: March 4, 2014
Manuscript Accepted: March 4, 2014
Published: March 13, 2014

Marco Ornigotti and Andrea Aiello, "Surface angular momentum of light beams," Opt. Express 22, 6586-6596 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Maxwell, A Treatise on Electricity and Magnetism(Dover, 1954).
  2. J. H. Poynting, “The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light,” Proc. R. Soc. London Ser. A 82, 560–567 (1909). [CrossRef]
  3. R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936). [CrossRef]
  4. C. G. Darwin, “Notes on the theory of radiation,” Proc. R. Soc. London A 136, 36–52 (1932). [CrossRef]
  5. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992). [CrossRef] [PubMed]
  6. S. M. Barnett, L. Allen, “Orbital angular momentum and nonparaxial light beams,” Opt. Commun. 110, 670–678 (1994). [CrossRef]
  7. S. J. van Enk, G. Nienhuis, “Spin and orbital angular momentum of photons,” Europhys. Lett. 25, 497–501 (1994). [CrossRef]
  8. S. J. van Enk, G. Nienhuis, “Commutation rules and eigenvalues of spin and orbital angular momentum of radiation fields,” J. Mod. Opt. 41, 963–977 (1994). [CrossRef]
  9. S. M. Barnett, “Optical angular-momentum flux,” J. Opt. B Quantum Semiclass. Opt. 4, S7–S16 (2002). [CrossRef]
  10. M. V. Berry, “Optical currents,” J. Opt. A Pure Appl. Opt. 11, 094001 (2009). [CrossRef]
  11. C.-F. Li, “Spin and orbital angular momentum of a class of nonparaxial light beams having a globally defined polarization,” Phys. Rev. A 80, 063814 (2009). [CrossRef]
  12. K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, A. Aiello, “Angular momenta and spin-orbit interaction of nonparaxial light in free space,” Phys. Rev. A 82, 063825 (2010). [CrossRef]
  13. S. M. Barnett, “Rotation of electromagnetic fields and the nature of optical angular momentum,” J. Mod. Opt. 57, 1339–1343 (2010). [CrossRef]
  14. I. Bialynicki-Birula, Z. Bialynicki-Birula, “Canonical separation of angular momentum of light into its orbital and spin parts,” J. Opt. 13, 064014 (2011). [CrossRef]
  15. O. Hosten, P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319, 787–790 (2008). [CrossRef] [PubMed]
  16. A. Aiello, J. P. Woerdman, “Role of beam propagation in Goos-Hänchen and Imbert-Fedorov shifts,” Opt. Lett. 33, 1437–1439 (2008). [CrossRef] [PubMed]
  17. M. Onoda, S. Murakami, N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93, 083901 (2004). [CrossRef] [PubMed]
  18. K. Y. Bliokh, Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96, 073903 (2006). [CrossRef] [PubMed]
  19. A. Y. Bekshaev, “Oblique section of a paraxial light beam: criteria for azimuthal energy flow and orbital angular momentum,” J. Opt. A Pure Appl. Opt. 11, 094003 (2009). [CrossRef]
  20. A. Aiello, N. Lindlein, C. Marquardt, G. Leuchs, “Transverse angular momentum and geometric spin Hall effect of light,” Phys. Rev. Lett. 103, 100401 (2009). [CrossRef] [PubMed]
  21. S. Franke-Arnold, L. Allen, M. Padgett, “Advances in optical angular momentum,” Laser Photonics Rev. 2, 299–313 (2008). [CrossRef]
  22. Optical Angular Momentum, L. Allen, S. M. Barnett, M. J. Padgett, eds. (Institute of Physics, 2003). [CrossRef]
  23. K. Y. Bliokh, A. Aiello, M. Alonso, “Spin-orbit interactions of light in isotropic media,” in The Angular Momentum of Light, D. L. Andrews, M. Babiker, eds. (Cambridge University, 2012), 174–245.
  24. H. A. Haus, J. L. Pan, “Photon spin and the paraxial wave equation,” Am. J. Phys. 61, 818–821 (1993). [CrossRef]
  25. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Photons and Atoms (Wiley-VCH, 2004), Chap. I.
  26. J. B. Götte, S. M. Barnett, “Light beams carrying orbital angular momentum,” in The Angular Momentum of Light, D. L. Andrews, M. Babiker, eds. (Cambridge University, 2012), 1–30.
  27. J. H. Crichton, P. L. Marston, “The measurable distinction between the spin and orbital angular momenta of electromagnetic radiation,” Electron. J. Diff. Eq. Conf. 04, 37–50 (2000).
  28. T. A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, A. Rubinsztein-Dunlop, “Angular momentum of a strongly focused Gaussian beam,” J. Opt. A Pure Appl. Opt. 10, 115005 (2008). [CrossRef]
  29. J. Humblet, “Sur le moment d’impulsion d’une onde électromagnètique,” Physica 10, 585–603 (1943). [CrossRef]
  30. M. Lax, W. H. Louisell, W. B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365–1370 (1975). [CrossRef]
  31. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995). [CrossRef]
  32. R. Loudon, The Quantum Theory of Light, 3rd ed. (Oxford University, 2000).
  33. J. J. M. Braat, P. Dirksen, A. J. E. M. Janssen, A. S. van de Nes, “Extended Nijboer-Zernike representation of the vector field in the focal region of an aberrated high-aperture optical system,” J. Opt. Soc. Am. A 20, 2281–2292 (2003). [CrossRef]
  34. J. J. M. Braat, S. van Haver, A. J. E. M. Janssen, P. Dirksen, “Energy and momentum flux in a high-numerical-aperture beam using the extended Nijboer-Zernike diffraction formalism,” J. Eur. Opt. Soc. Rapid 2, 07032 (2007). [CrossRef]
  35. D. B. Ruffner, D. G. Grier, “Optical forces and torques in nonuniform beams of light,” Phys. Rev. Lett. 108, 173602 (2012). [CrossRef] [PubMed]
  36. A. E. Siegman, Lasers (University Science Books, 1986).
  37. The same “correction” factor β was found in [6]. However, the expression (4.4) in [6], when evaluated for l= 0 = p in the paraxial limit 1/(2kzR)=θ02/4≪1 gives 𝒥z/ℰ≃(σz/ω)(1+θ02/4) instead of 𝒥z/ℰ≃(σz/ω)(1−θ02/4), as given by Eq. (8) in [28]. The difference between the two results resides in the fact that different types of beams and geometries (planar versus spherical) are considered.
  38. W. L. Erikson, S. Singh, “Polarization properties of Maxwell-Gaussian laser beams,” Phys. Rev. A 49, 5778–5786 (1994).
  39. J. Leach, J. Courtial, K. Skeldon, S. M. Barnett, S. Franke-Arnold, M. J. Padgett, “Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon,” Phys. Rev. Lett. 92, 013601 (2004). [CrossRef] [PubMed]
  40. O. G. Rodríguez-Herrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, C. Dainty, “Optical nanoprobing via spin-orbit interaction of light,” Phys. Rev. Lett. 104, 253601 (2010). [CrossRef] [PubMed]
  41. P. Banzer, U. Peschel, S. Quabis, G. Leuchs, “On the experimental investigation of the electric and magnetic response of a single nano-structure,” Opt. Express 18, 10905–10923 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited