OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 6613–6619

Polarization-selectable cavity locking method for generation of laser Compton scattered γ-rays

Atsushi Kosuge, Michiaki Mori, Hajime Okada, Ryoichi Hajima, and Keisuke Nagashima  »View Author Affiliations

Optics Express, Vol. 22, Issue 6, pp. 6613-6619 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2046 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Nowadays, generation of energy-tunable, monochromatic γ-rays is needed to establish a nondestructive assay method of nuclear fuel materials. The γ-rays are generated by collision of laser photons stored in a cavity and relativistic electrons. We propose a configuration of an enhancement cavity capable of performing polarization control fabricated by a combination of a four-mirror ring cavity with a small spot inside a cavity and a three-mirror of reflective optics as an image inverter for polarization-selectable γ-rays. The image inverter introduces a phase shift of specific polarization which can be used to generate an error signal to lock an optical cavity at a resonance condition.

© 2014 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(140.4780) Lasers and laser optics : Optical resonators
(260.5430) Physical optics : Polarization
(320.7160) Ultrafast optics : Ultrafast technology

ToC Category:
Optical Technologies

Original Manuscript: December 26, 2013
Revised Manuscript: February 26, 2014
Manuscript Accepted: March 2, 2014
Published: March 14, 2014

Virtual Issues
2013 Advanced Solid State Lasers (2013) Optics Express

Atsushi Kosuge, Michiaki Mori, Hajime Okada, Ryoichi Hajima, and Keisuke Nagashima, "Polarization-selectable cavity locking method for generation of laser Compton scattered γ-rays," Opt. Express 22, 6613-6619 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436(7048), 234–237 (2005). [CrossRef] [PubMed]
  2. R. J. Jones, K. D. Moll, M. J. Thorpe, J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett. 94(19), 193201 (2005). [CrossRef] [PubMed]
  3. I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, T. Udem, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, F. Krausz, “Power scaling of a high-repetition-rate enhancement cavity,” Opt. Lett. 35(12), 2052–2054 (2010). [CrossRef] [PubMed]
  4. I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Rußbüldt, J. Rauschenberger, J. Limpert, Th. Udem, A. Tünnermann, T. W. Hänsch, A. Apolonski, F. Krausz, E. Fill, “Compact high-repetition-rate source of coherent 100 eV radiation,” Nat. Photonics 7(8), 608–612 (2013). [CrossRef]
  5. A. Ozawa, J. Rauschenberger, Ch. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100(25), 253901 (2008). [CrossRef] [PubMed]
  6. A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482(7383), 68–71 (2012). [CrossRef] [PubMed]
  7. R. Hajima, T. Hayakawa, N. Kikuzawa, E. Minehara, “Proposal of Nondestructive Radionuclide Assay Using a High-Flux Gamma-Ray Source and Nuclear Resonance Fluorescence,” J. Nucl. Sci. Technol. 45(5), 441–451 (2008). [CrossRef]
  8. T. Hayakawa, N. Kikuzawa, R. Hajima, T. Shizuma, N. Nishimori, M. Fujiwara, M. Seya, “Nondestructive assay of plutonium and minor actinide in spent fuel using nuclear resonance fluorescence with laser Compton scattering γ-rays,” Nucl. Instr. Meth. A 621(1-3), 695–700 (2010). [CrossRef]
  9. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munely, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983). [CrossRef]
  10. D. A. Shaddock, M. B. Gray, D. E. McClelland, “Frequency locking a laser to an optical cavity by use of spatial mode interference,” Opt. Lett. 24(21), 1499–1501 (1999). [CrossRef] [PubMed]
  11. T. W. Hänsch, B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35(3), 441–444 (1980). [CrossRef]
  12. Y. Honda, H. Shimizu, M. Fukuda, T. Omori, J. Urakawa, K. Sakaue, H. Sakai, N. Sasao, “Stabilization of a non-planar optical cavity using its polarization property,” Opt. Commun. 282(15), 3108–3112 (2009). [CrossRef]
  13. R. H. Dixon, “Use of a three-mirror image rotator in a laser-produced plasma experiment,” Appl. Opt. 18(23), 3883–3884 (1979). [CrossRef] [PubMed]
  14. S. Saraf, R. L. Byer, P. J. King, “High-extinction-ratio resonant cavity polarizer for quantum-optics measurements,” Appl. Opt. 46(18), 3850–3855 (2007). [CrossRef] [PubMed]
  15. R. C. Jonse, “New calculus for the treatment of optical systems: electromagnetic theory,” J. Opt. Soc. Am. 46(2), 126–131 (1956). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited