OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 6634–6646

Two approaches for ultrafast random bit generation based on the chaotic dynamics of a semiconductor laser

Nianqiang Li, Byungchil Kim, V. N. Chizhevsky, A. Locquet, M. Bloch, D. S. Citrin, and Wei Pan  »View Author Affiliations


Optics Express, Vol. 22, Issue 6, pp. 6634-6646 (2014)
http://dx.doi.org/10.1364/OE.22.006634


View Full Text Article

Enhanced HTML    Acrobat PDF (1502 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper reports the experimental investigation of two different approaches to random bit generation based on the chaotic dynamics of a semiconductor laser with optical feedback. By computing high-order finite differences of the chaotic laser intensity time series, we obtain time series with symmetric statistical distributions that are more conducive to ultrafast random bit generation. The first approach is guided by information-theoretic considerations and could potentially reach random bit generation rates as high as 160 Gb/s by extracting 4 bits per sample. The second approach is based on pragmatic considerations and could lead to rates of 2.2 Tb/s by extracting 55 bits per sample. The randomness of the bit sequences obtained from the two approaches is tested against three standard randomness tests (ENT, Diehard, and NIST tests), as well as by calculating the statistical bias and the serial correlation coefficients on longer sequences of random bits than those used in the standard tests.

© 2014 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(140.1540) Lasers and laser optics : Chaos
(140.5960) Lasers and laser optics : Semiconductor lasers
(190.3100) Nonlinear optics : Instabilities and chaos

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: October 22, 2013
Revised Manuscript: February 14, 2014
Manuscript Accepted: March 4, 2014
Published: March 14, 2014

Citation
Nianqiang Li, Byungchil Kim, V. N. Chizhevsky, A. Locquet, M. Bloch, D. S. Citrin, and Wei Pan, "Two approaches for ultrafast random bit generation based on the chaotic dynamics of a semiconductor laser," Opt. Express 22, 6634-6646 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-6-6634


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Masoller, N. B. Abraham, “Stability and dynamical properties of the coexisting attractors of an external cavity semiconductor laser,” Phys. Rev. A 57(2), 1313–1322 (1998). [CrossRef]
  2. J. Mørk, J. Mark, B. Tromborg, “Route to chaos and competition between relaxation oscillations for a semiconductor laser with optical feedback,” Phys. Rev. Lett. 65(16), 1999–2002 (1990). [CrossRef] [PubMed]
  3. J. Ohtsubo, Semiconductor Laser: Stability, Instability and Chaos (Springer, 2008).
  4. M. C. Soriano, J. Garcia-Ojalvo, C. R. Mirasso, I. Fischer, “Complex photonics: Dynamics and applications of delay-coupled semiconductor lasers,” Rev. Mod. Phys. 85(1), 421–470 (2013). [CrossRef]
  5. A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005). [CrossRef] [PubMed]
  6. R. M. Nguimdo, P. Colet, L. Larger, L. Pesquera, “Digital key for chaos communication performing time delay concealment,” Phys. Rev. Lett. 107(3), 034103 (2011). [CrossRef] [PubMed]
  7. F. Y. Lin, J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004). [CrossRef]
  8. L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutierrez, L. Pesquera, C. R. Mirasso, I. Fischer, “Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing,” Opt. Express 20(3), 3241–3249 (2012). [CrossRef] [PubMed]
  9. A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008). [CrossRef]
  10. I. Reidler, Y. Aviad, M. Rosenbluh, I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett. 103(2), 024102 (2009). [CrossRef] [PubMed]
  11. I. Kanter, Y. Aviad, I. Reidler, E. Cohen, M. Rosenbluh, “An optical ultrafast random number generator,” Nat. Photonics 4(1), 58–61 (2010). [CrossRef]
  12. D. Knuth, The Art of Computer Programming, 3rd ed. (Addison Wesley Longman, 1998), Vol. 2.
  13. N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002). [CrossRef]
  14. T. Honjo, A. Uchida, K. Amano, K. Hirano, H. Someya, H. Okumura, K. Yoshimura, P. Davis, Y. Tokura, “Differential-phase-shift quantum key distribution experiment using fast physical random bit generator with chaotic semiconductor lasers,” Opt. Express 17(11), 9053–9061 (2009). [CrossRef] [PubMed]
  15. T. Durt, C. Belmont, L. P. Lamoureux, K. Panajotov, F. Van den Berghe, H. Thienpont, “Fast quantum-optical random-number generators,” Phys. Rev. A 87(2), 022339 (2013). [CrossRef]
  16. C. R. S. Williams, J. C. Salevan, X. W. Li, R. Roy, T. E. Murphy, “Fast physical random number generator using amplified spontaneous emission,” Opt. Express 18(23), 23584–23597 (2010). [CrossRef] [PubMed]
  17. H. Guo, W. Tang, Y. Liu, W. Wei, “Truly random number generation based on measurement of phase noise of a laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(5), 051137 (2010). [CrossRef] [PubMed]
  18. B. Qi, Y.-M. Chi, H.-K. Lo, L. Qian, “High-speed quantum random number generation by measuring phase noise of a single-mode laser,” Opt. Lett. 35(3), 312–314 (2010). [CrossRef] [PubMed]
  19. X. Li, A. B. Cohen, T. E. Murphy, R. Roy, “Scalable parallel physical random number generator based on a superluminescent LED,” Opt. Lett. 36(6), 1020–1022 (2011). [CrossRef] [PubMed]
  20. T. Stojanovski, J. Pihl, L. Kocarev, “Chaos-based random number generators–Part II: practical realization,” IEEE Trans. Circ. Syst. I Fundam. Theory Appl. 48(3), 382–385 (2001). [CrossRef]
  21. J. Walker, Hotbits: Genuine Random Numbers, Generated by Radioactive Decay, http://www.fourmilab.ch/hotbits .
  22. W. T. Holman, J. A. Connelly, A. B. Dowlatabadi, “An integrated analog/digital random noise source,” IEEE Trans. Circuits Syst. I 44(6), 521–528 (1997). [CrossRef]
  23. J. T. Gleeson, “Truly random number generator based on turbulent electroconvection,” Appl. Phys. Lett. 81(11), 1949 (2002). [CrossRef]
  24. D. P. Rosin, D. Rontani, D. J. Gauthier, “Ultrafast physical generation of random numbers using hybrid Boolean networks,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(4), 040902 (2013). [CrossRef] [PubMed]
  25. X. Ma, F. Xu, H. Xu, X. Tan, B. Qi, H. Lo, “Postprocessing for quantum random-numbers generators: Entropy evaluation and randomness extraction,” Phys. Rev. A 87(6), 062327 (2013). [CrossRef]
  26. V. N. Chizhevsky, “Fast generation of random bits based on polarization noises in a semiconductor vertical-cavity laser,” Opt. Spectrosc. 111(5), 689–694 (2011). [CrossRef]
  27. T. Harayama, S. Sunada, K. Yoshimura, P. Davis, K. Tsuzuki, A. Uchida, “Fast nondeterministic random-bit generation using on-chip chaos lasers,” Phys. Rev. A 83(3), 031803 (2011). [CrossRef]
  28. A. Argyris, S. Deligiannidis, E. Pikasis, A. Bogris, D. Syvridis, “Implementation of 140 Gb/s true random bit generator based on a chaotic photonic integrated circuit,” Opt. Express 18(18), 18763–18768 (2010). [CrossRef] [PubMed]
  29. J. Z. Zhang, Y. C. Wang, M. Liu, L. G. Xue, P. Li, A. B. Wang, M. J. Zhang, “A robust random number generator based on differential comparison of chaotic laser signals,” Opt. Express 20(7), 7496–7506 (2012). [CrossRef] [PubMed]
  30. P. Li, Y. C. Wang, J. Z. Zhang, “All-optical fast random number generator,” Opt. Express 18(19), 20360–20369 (2010). [CrossRef] [PubMed]
  31. R. M. Nguimdo, G. Verschaffelt, J. Danckaert, X. Leijtens, J. Bolk, G. Van der Sande, “Fast random bits generation based on a single chaotic semiconductor ring laser,” Opt. Express 20(27), 28603–28613 (2012). [CrossRef] [PubMed]
  32. N. Oliver, M. C. Soriano, D. W. Sukow, I. Fischer, “Dynamics of a semiconductor laser with polarization-rotated feedback and its utilization for random bit generation,” Opt. Lett. 36(23), 4632–4634 (2011). [CrossRef] [PubMed]
  33. N. Oliver, M. C. Soriano, D. W. Sukow, I. Fischer, “Fast random bit generation using a chaotic laser: approaching the information theoretic limit,” IEEE J. Quantum Electron. 49(11), 910–918 (2013). [CrossRef]
  34. T. Harayama, S. Sunada, K. Yoshimura, J. Muramatsu, K. Arai, A. Uchida, P. Davis, “Theory of fast nondeterministic physical random-bit generation with chaotic lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(4), 046215 (2012). [CrossRef] [PubMed]
  35. T. Mikami, K. Kanno, K. Aoyama, A. Uchida, T. Ikeguchi, T. Harayama, S. Sunada, K.-i. Arai, K. Yoshimura, P. Davis, “Estimation of entropy rate in a fast physical random-bit generator using a chaotic semiconductor laser with intrinsic noise,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(1 Pt 2), 016211 (2012). [CrossRef] [PubMed]
  36. X. Fang, B. Wetzel, J. Merolla, J. M. Dudley, L. Larger, C. Guyeux, J. M. Bahi, “Noise and chaos contributions in fast random bit sequence generated from broadband optoelectronic entropy sources,” IEEE Trans. Circuits Syst. I 99, 1–14 (2013).
  37. K. Hirano, T. Yamazaki, S. Morikatsu, H. Okumura, H. Aida, A. Uchida, S. Yoshimori, K. Yoshimura, T. Harayama, P. Davis, “Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers,” Opt. Express 18(6), 5512–5524 (2010). [CrossRef] [PubMed]
  38. J. G. Wu, X. Tang, Z. M. Wu, G. Q. Xia, G. Y. Feng, “Parallel generation of 10 Gbits/s physical random number streams using chaotic semiconductor lasers,” Laser Phys. 22(10), 1476–1480 (2012). [CrossRef]
  39. X. Z. Li, S. C. Chan, “Random bit generation using an optically injected semiconductor laser in chaos with oversampling,” Opt. Lett. 37(11), 2163–2165 (2012). [CrossRef] [PubMed]
  40. X. Z. Li, S. C. Chan, “Heterodyne random bit generation using an optically injected semiconductor laser in chaos,” IEEE J. Quantum Electron. 49(10), 829–838 (2013). [CrossRef]
  41. Y. Akizawa, T. Yamazaki, A. Uchida, T. Harayama, S. Sunada, K. Arai, K. Yoshimura, P. Davis, “Fast random number generation with bandwidth-enhanced chaotic semiconductor lasers at8×50Gb/s, ” IEEE Photon. Technol. Lett. 24(12), 1042–1044 (2012). [CrossRef]
  42. http://people.seas.harvard.edu/~salil/pseudorandomness .
  43. C. E. Shannon, “A mathematical theory of communication,” Bell System Technical Journal 27, 379–423 and 623–656 (1948).
  44. M. A. Wayne, P. G. Kwiat, “Low-bias high-speed quantum random number generator via shaped optical pulses,” Opt. Express 18(9), 9351–9357 (2010). [CrossRef] [PubMed]
  45. K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45(11), 1367–1379 (2009). [CrossRef]
  46. T. Yamazaki, A. Uchida, “Performance of random number generators using noise-based superluminescent diode and chaos-based semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 0600309 (2013). [CrossRef]
  47. V. N. Chizhevsky, “Symmetrization of single-sided or nonsymmetrical distributions: The way to enhance a generation rate of random bits from a physical source of randomness,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82(5), 050101 (2010). [CrossRef] [PubMed]
  48. T. E. Murphy, R. Roy, “Chaotic lasers: The world’s fastest dice,” Nat. Photonics 2(12), 714–715 (2008). [CrossRef]
  49. J. Z. Zhang, Y. C. Wang, L. G. Xue, J. Y. Hou, B. B. Zhang, A. B. Wang, M. J. Zhang, “Delay line length selection in generating fast random numbers with a chaotic laser,” Appl. Opt. 51(11), 1709–1714 (2012). [CrossRef] [PubMed]
  50. A. B. Wang, P. Li, J. G. Zhang, J. Z. Zhang, L. Li, Y. C. Wang, “4.5 Gbps high-speed real-time physical random bit generator,” Opt. Express 21(17), 20452–20462 (2013). [CrossRef] [PubMed]
  51. I. Kanter, Y. Aviad, I. Reidler, E. Cohen, M. Rosenbluh, “Towards the generation of random bits at terahertz rates based on chaotic semiconductor laser,” J. Phys. Conf. Ser. 233, 012002 (2010). [CrossRef]
  52. D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, “Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback,” Opt. Lett. 32(20), 2960–2962 (2007). [CrossRef] [PubMed]
  53. S. Priyadarshi, Y. Hong, I. Pierce, K. A. Shore, “Experimental investigations of time-delay signature concealment in chaotic external-cavity VCSELs subject to variable optical polarization angle of feedback,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1700707 (2013). [CrossRef]
  54. J. Walker, Ent-a pseudorandom sequence test program, http://www. fourmilab.ch/random .
  55. G. Marsaglia, The diehard test suite (2003), http:// www. Csis. hku. hk/diehard .
  56. A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dary, S. Vo, “A statistical test suite for the validation of random number generators and pseudo random number generators for cryptographic applications”, http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html .
  57. T. Granlund et al.., GMP, the GNU multiple precision arithmetic library. http://gmplib.org (2013).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited