OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 6661–6673

High throughput holographic imaging-in-flow for the analysis of a wide plankton size range

Catherine Yourassowsky and Frank Dubois  »View Author Affiliations


Optics Express, Vol. 22, Issue 6, pp. 6661-6673 (2014)
http://dx.doi.org/10.1364/OE.22.006661


View Full Text Article

Enhanced HTML    Acrobat PDF (4847 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Abstract: We developed a Digital Holographic Microscope (DHM) working with a partial coherent source specifically adapted to perform high throughput recording of holograms of plankton organisms in-flow, in a size range of 3µm-300µm, which is of importance for this kind of applications. This wide size range is achieved with the same flow cell and with the same microscope magnification. The DHM configuration combines a high magnification with a large field of view and provides high-resolution intensity and quantitative phase images refocusing on high sample flow rate. Specific algorithms were developed to detect and extract automatically the particles and organisms present in the samples in order to build holograms of each one that are used for holographic refocusing and quantitative phase contrast imaging. Experimental results are shown and discussed.

© 2014 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(180.6900) Microscopy : Three-dimensional microscopy
(090.1995) Holography : Digital holography
(110.3175) Imaging systems : Interferometric imaging

ToC Category:
Holography

History
Original Manuscript: December 11, 2013
Revised Manuscript: February 21, 2014
Manuscript Accepted: February 25, 2014
Published: March 14, 2014

Virtual Issues
Vol. 9, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Catherine Yourassowsky and Frank Dubois, "High throughput holographic imaging-in-flow for the analysis of a wide plankton size range," Opt. Express 22, 6661-6673 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-6-6661


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Campbell, R. J. Olson, H. M. Sosik, A. Abraham, D. W. Henrichs, C. J. Hyatt, E. J. Buskey, “First harmfull Dinophysis (Dinophyceae, Dinophysiales) bloom in the U.S. is revealed by automated imaging flow cytometry,” J. Phycol. 46(1), 66–75 (2010). [CrossRef]
  2. A. Schaap, T. Rohrlack, Y. Bellouard, “Optical classification of algae species with a glass lab-on-a-chip,” Lab Chip 12(8), 1527–1532 (2012). [CrossRef] [PubMed]
  3. L. T. Nielsen, H. H. Jakobsen, P. J. Hansen, “High resilience of two coastal plankton communities to twenty-first century seawater acidification: evidence from microcosm studies,” Mar. Biol. Res. 6(6), 542–555 (2010). [CrossRef]
  4. N. J. Poulton and J. L. Martin, “Imaging flow cytometry for quantitative phytoplankton analysis-FlowCAM,” in Microscopic and Molecular Methods for Quantitative Phytoplankton Analysis, B. Karlson, C. Cusack, and E. Bresnan eds. (Intergovernmental Oceanographic Commission of UNESCO, 2010) 47–54.
  5. H. H. Jakobsen, J. Carstensen, “FlowCAM: Sizing cells and understanding the impact of size distributions on biovolume of planktonic community structure,” Aquat. Microb. Ecol. 65(1), 75–87 (2011). [CrossRef]
  6. V. Kachel, J. Wietzorrek, “Flow cytometry and integrated imaging,” Sci. Mar. 64, 247–254 (2000).
  7. H. M. Sosik, R. J. Olson, “Automated taxonomic classification of phytoplankton sampled with imaging-in-flow cytometry,” Limnol. Oceanogr. Methods 5, 204–216 (2007). [CrossRef]
  8. J. S. Erickson, N. Hashemi, J. M. Sullivan, A. D. Weidemann, F. S. Ligler, “In Situ Phytoplankton Analysis: There’s Plenty of Room at the Bottom,” Anal. Chem. 84(2), 839–850 (2012). [CrossRef] [PubMed]
  9. C. K. Sieracki, M. E. Sieracki, C. S. Yentsch, “An imaging-in-flow system for automated analysis of marine microplankton,” Mar. Ecol. Prog. Ser. 168, 285–296 (1998). [CrossRef]
  10. W. E. Ortyn, D. J. Perry, V. Venkatachalam, L. Liang, B. E. Hall, K. Frost, D. A. Basiji, “Extended depth of field imaging for high speed cell analysis,” Cytometry A 71A(4), 215–231 (2007). [CrossRef] [PubMed]
  11. T. Zhang, I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23(15), 1221–1223 (1998). [CrossRef] [PubMed]
  12. F. Dubois, L. Joannes, J.-C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38(34), 7085–7094 (1999). [CrossRef] [PubMed]
  13. E. Cuche, F. Bevilacqua, C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24(5), 291–293 (1999). [CrossRef] [PubMed]
  14. U. Schnars, W. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–R101 (2002). [CrossRef]
  15. P. Ferraro, G. Coppola, S. De Nicola, A. Finizio, G. Pierattini, “Digital holographic microscope with automatic focus tracking by detecting sample displacement in real time,” Opt. Lett. 28(14), 1257–1259 (2003). [CrossRef] [PubMed]
  16. W. Xu, M. H. Jericho, H. J. Kreuzer, I. A. Meinertzhagen, “Tracking particles in four dimensions with in-line holographic microscopy,” Opt. Lett. 28(3), 164–166 (2003). [CrossRef] [PubMed]
  17. N. Salah, G. Godard, D. Lebrun, P. Paranthoën, D. Allano, S. Coëtmellec, “Application of multiple exposure digital in-line holography to particle tracking in a Bénard-von Kármán vortex flow,” Meas. Sci. Technol. 19(7), 074001 (2008). [CrossRef]
  18. F. C. Cheong, B. Sun, R. Dreyfus, J. Amato-Grill, K. Xiao, L. Dixon, D. G. Grier, “Flow visualization and flow cytometry with holographic video microscopy,” Opt. Express 17(15), 13071–13079 (2009). [CrossRef] [PubMed]
  19. E. Malkiel, O. Alquaddoomi, J. Katz, “Measurements of plankton distribution in the ocean using submersible holography,” Meas. Sci. Technol. 10(12), 1142–1152 (1999). [CrossRef]
  20. J. Watson, “Submersible digital holographic cameras and their application to marine science,” Opt. Eng. 50(9), 091313 (2011). [CrossRef]
  21. S. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. Jericho, H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77(4), 043706 (2006). [CrossRef]
  22. J. A. Dominguez-Caballero, N. Loomis, W. Li, Q. Hu, J. Milgram, G. Barbastathis, C. Davis, “Advances in plankton imaging using digital holography,” dx.doi.org/10.1364/DH.2007.DMB5 (2007)
  23. A. B. Bochdansky, M. H. Jericho, G. J. Herndl, “Development and deployment of a point-source digital inline holographic microscope for the study of plankton and particles to a depth of 6000 m,” Limnol. Oceanogr. Methods 11, 28–40 (2013). [CrossRef]
  24. S. Talapatra, J. Hong, M. McFarland, A. R. Nayak, C. Zhang, J. Katz, J. Sullivan, M. Twardowski, J. Rines, P. Donaghay, “Characterization of biophysical interactions in the water column using in situ digital holography,” Mar. Ecol. Prog. Ser. 473, 29–51 (2013). [CrossRef]
  25. F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. Kurowski, O. Monnom, “Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis,” Appl. Opt. 45(5), 864–871 (2006). [CrossRef] [PubMed]
  26. C. Minetti, N. Callens, G. Coupier, T. Podgorski, F. Dubois, “Fast measurements of concentration profiles inside deformable objects in microflows with reduced spatial coherence digital holography,” Appl. Opt. 47(29), 5305–5314 (2008). [CrossRef] [PubMed]
  27. B. Javidi, I. Moon, S. Yeom, E. Carapezza, “Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography,” Opt. Express 13(12), 4492–4506 (2005). [CrossRef] [PubMed]
  28. D. Shin, M. Daneshpanah, A. Anand, B. Javidi, “Optofluidic system for three-dimensional sensing and identification of micro-organisms with digital holographic microscopy,” Opt. Lett. 35(23), 4066–4068 (2010). [CrossRef] [PubMed]
  29. A. El Mallahi, C. Minetti, F. Dubois, “Automated three-dimensional detection and classification of living organisms using digital holographic microscopy with partial spatial coherent source: application to the monitoring of drinking water resources,” Appl. Opt. 52(1), A68–A80 (2013). [CrossRef] [PubMed]
  30. P. Kolman, R. Chmelík, “Coherence-controlled holographic microscope,” Opt. Express 18(21), 21990–22003 (2010). [CrossRef] [PubMed]
  31. A. El Mallahi, A. Detavernier, C. Yourassowsky, F. Dubois, “Automated 3D detection and classification of Giardia lamblia cysts using digital holographic microscopy with partially coherent source,” Proc. SPIE 8429, 84291D (2012). [CrossRef]
  32. M. Takeda, H. Ina, S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72(1), 156–160 (1982). [CrossRef]
  33. F. Dubois, P. Grosfils, “Dark-field digital holographic microscopy to investigate objects that are nanosized or smaller than the optical resolution,” Opt. Lett. 33(22), 2605 (2008). [CrossRef] [PubMed]
  34. A. El Mallahi, F. Dubois, “Separation of overlapped particles in digital holographic microscopy,” Opt. Express 21(5), 6466–6479 (2013). [CrossRef] [PubMed]
  35. F. Dubois, O. Monnom, C. Yourassowsky, J.-C. Legros, “Border processing in digital holography by extension of the digital hologram and reduction of the higher spatial frequencies,” Appl. Opt. 41(14), 2621–2626 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited