OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 6680–6690

Plasmon resonances in a stacked pair of graphene ribbon arrays with a lateral displacement

Meng-Dong He, Gui Zhang, Jian-Qiang Liu, Jian-Bo Li, Xin-Jun Wang, Zhen-Rong Huang, Lingling Wang, and Xiaoshuang Chen  »View Author Affiliations

Optics Express, Vol. 22, Issue 6, pp. 6680-6690 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (858 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We find that a stacked pair of graphene ribbon arrays with a lateral displacement can excite plasmon waveguide mode in the gap between ribbons, as well as surface plasmon mode on graphene ribbon surface. When the resonance wavelengthes of plasmon waveguide mode and surface plasmon mode are close to each other, there is a strong electromagnetic interaction between the two modes, and then they contribute together to transmission dip. The plasmon waveguide mode resonance can be manipulated by the lateral displacement and longitudinal interval between arrays due to their influence on the manner and strength of electromagnetic coupling between two arrays. The findings expand our understanding of electromagnetic resonances in graphene-ribbon array structure and may affect further engineering of nanoplasmonic devices and metamaterials.

© 2014 Optical Society of America

OCIS Codes
(120.7000) Instrumentation, measurement, and metrology : Transmission
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(260.5740) Physical optics : Resonance

ToC Category:

Original Manuscript: December 23, 2013
Revised Manuscript: February 22, 2014
Manuscript Accepted: March 4, 2014
Published: March 14, 2014

Meng-Dong He, Gui Zhang, Jian-Qiang Liu, Jian-Bo Li, Xin-Jun Wang, Zhen-Rong Huang, Lingling Wang, and Xiaoshuang Chen, "Plasmon resonances in a stacked pair of graphene ribbon arrays with a lateral displacement," Opt. Express 22, 6680-6690 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  2. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 324, 1530–1534 (2009).
  3. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006). [CrossRef] [PubMed]
  4. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391667–669 (1998). [CrossRef]
  5. J. A. Porto, F. J. García-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999). [CrossRef]
  6. C. Genet, T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007). [CrossRef] [PubMed]
  7. M. Jablan, H. Buljan, M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80, 245435 (2009). [CrossRef]
  8. S. Thongrattanasiri, I. Silveiro, F. Javier García de Abajo, “Plasmons in electrostatically doped graphene,” Appl. Phys. Lett. 100, 201105 (2012). [CrossRef]
  9. A. N. Grigorenko, M. Polini, K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012). [CrossRef]
  10. A. Yu. Nikitin, F. Guinea, F. J. García-Vidal, L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85, 081405 (2012). [CrossRef]
  11. S. Thongrattanasiri, F. H. L. Koppens, F. Javier García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012). [CrossRef] [PubMed]
  12. A. Yu. Nikitin, F. Guinea, L. Martin-Moreno, “Resonant plasmonic effects in periodic graphene antidot arrays,” Appl. Phys. Lett. 101, 151119 (2012). [CrossRef]
  13. W. Zhu, I. D. Rukhlenko, L. M. Si, M. Premaratne, “Graphene-enabled tunability of optical fishnet metamaterial,” Appl. Phys. Lett. 102, 121911 (2013). [CrossRef]
  14. X. Zhu, W. Yan, P. U. Jepsen, O. Hansen, N. A. Mortensen, S. Xiao, “Experimental observation of plasmons in a graphene monolayer resting on a two-dimensional subwavelength silicon grating,” Appl. Phys. Lett. 102, 131101 (2013). [CrossRef]
  15. W. Gao, J. Shu, C. Qiu, Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 7806–7813 (2012). [CrossRef] [PubMed]
  16. W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13, 3698–3702 (2013). [CrossRef] [PubMed]
  17. D. K. Efetov, P. Kim, “Controlling electron-phonon interactions in graphene at ultra high carrier densities,” Phys. Rev. Lett. 105, 256805 (2010). [CrossRef]
  18. J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, F. Wang, “Electrical control of optical plasmon resonance with graphene,” Nano Lett. 12, 5598–5602 (2012). [CrossRef] [PubMed]
  19. J. Schedin, E. Lidorikis, A. Lombardo, V. G. Kravets, A. K. Geim, A. N. Grigorenko, K. S. Novoselov, A. C. Ferrari, “Surface-enhanced Raman spectroscopy of graphene,” ACS Nano 4, 5617–5626 (2010). [CrossRef] [PubMed]
  20. J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, F. Javier García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6, 431–440 (2012). [CrossRef]
  21. J. Niu, Y. J. Shin, Y. Lee, J. H. Ahn, H. Yang, “Graphene induced tunability of the surface plasmon resonance,” Appl. Phys. Lett. 100, 061116 (2012). [CrossRef]
  22. V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, K. S. Novoselov, A. N. Grigorenko, “Surface hydrogenation and optics of a graphene sheet transferred onto a plasmonic nanoarray,” J. Phys. Chem. C 116, 3882–3887 (2012). [CrossRef]
  23. A. Ishikawa, T. Tanaka, “Plasmon hybridization in graphene metamaterials,” Appl. Phys. Lett. 102, 253110 (2013). [CrossRef]
  24. A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76, 201405(R) (2007). [CrossRef]
  25. A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8, 2171–2175 (2008). [CrossRef] [PubMed]
  26. B. Kanté, Y. S. Park, K. O’Brien, D. Shuldman, N. D. Lanzillotti-Kimura, Z. J. Wong, X. Yin, X. Zhang, “Symmetry breaking and optical negative index of closed nanorings,” Nat. Commun. 3, 1180 (2012). [CrossRef] [PubMed]
  27. C. H. Gan, H. S. Chu, E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies,” Phys. Rev. B 85, 125431 (2012). [CrossRef]
  28. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601 (2001). [CrossRef] [PubMed]
  29. B. Wang, X. Zhang, X. Yuan, J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett. 100, 131111 (2012). [CrossRef]
  30. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotech. 6, 630–634 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited