OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 6699–6706

Pulse bursts with a controllable number of pulses from a mode-locked Yb-doped all fiber laser system

Xingliang Li, Shumin Zhang, Yanping Hao, and Zhenjun Yang  »View Author Affiliations

Optics Express, Vol. 22, Issue 6, pp. 6699-6706 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (945 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Pulse bursts with a controllable number of pulses per burst have been produced directly from a mode-locked Yb-doped fiber laser for the first time. Each output burst contained numerous pulses with a high pulse repetition rate of 29.4 MHz. The duration of a single pulse was 680 ps. The pulse burst had a repetition rate of 251.6 kHz. The pulse burst could easily be further amplified to a total pulse burst energy of ~795 nJ, corresponding to a total average power of 200 mW.

© 2014 Optical Society of America

OCIS Codes
(140.3280) Lasers and laser optics : Laser amplifiers
(140.7090) Lasers and laser optics : Ultrafast lasers
(140.3615) Lasers and laser optics : Lasers, ytterbium
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 7, 2014
Revised Manuscript: February 21, 2014
Manuscript Accepted: February 23, 2014
Published: March 14, 2014

Xingliang Li, Shumin Zhang, Yanping Hao, and Zhenjun Yang, "Pulse bursts with a controllable number of pulses from a mode-locked Yb-doped all fiber laser system," Opt. Express 22, 6699-6706 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. A. Malomed, “Bound solitons in the nonlinear Schrödinger-Ginzburg-Landau equation,” Phys. Rev. A 44(10), 6954–6957 (1991). [CrossRef] [PubMed]
  2. V. V. Afanasjev, B. A. Malomed, P. L. Chu, “Stability of bound states of pulses in the Ginzburg- Landau equations,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 56(5), 6020–6025 (1997). [CrossRef]
  3. X. Wu, D. Y. Tang, X. N. Luan, Q. Zhang, “Bound states of solitons in a fiber laser mode locked with carbon nanotube saturable absorber,” Opt. Commun. 284(14), 3615–3618 (2011). [CrossRef]
  4. X. L. Li, S. M. Zhang, Y. C. Meng, Y. P. Hao, H. F. Li, J. Du, Z. J. Yang, “Observation of soliton bound states in a graphene mode locked erbium-doped fiber laser,” Laser Phys. 22(4), 774–777 (2012). [CrossRef]
  5. M. Olivier, M. Piché, “Origin of the bound states of pulses in the stretched-pulse fiber laser,” Opt. Express 17(2), 405–418 (2009). [CrossRef] [PubMed]
  6. L. M. Zhao, D. Y. Tang, X. Wu, D. J. Lei, S. C. Wen, “Bound states of gain-guided solitons in a passively mode-locked fiber laser,” Opt. Lett. 32(21), 3191–3193 (2007). [CrossRef] [PubMed]
  7. B. Ortaç, A. Hideur, T. Chartier, M. Brunel, P. Grelu, H. Leblond, F. Sanchez, “Generation of bound states of three ultrashort pulses with a passively mode-locked high-power Yb-doped double-clad fiber laser,” IEEE Photonics Technol. Lett. 16(5), 1274–1276 (2004). [CrossRef]
  8. A. Komarov, H. Leblond, F. Sanchez, “Passive harmonic mode-locking in a fiber laser with nonlinear polarization rotation,” Opt. Commun. 267(1), 162–169 (2006). [CrossRef]
  9. Y. Meng, S. Zhang, X. Li, H. Li, J. Du, Y. Hao, “Multiple-soliton dynamic patterns in a graphene mode-locked fiber laser,” Opt. Express 20(6), 6685–6692 (2012). [CrossRef] [PubMed]
  10. X. Liu, L. Wang, D. Mao, X. Li, “Passive harmonic mode-locking of a fiber laser at controllable repetition rates from fundamental to eighth-order harmonic operation,” J. Mod. Opt. 57(17), 1635–1639 (2010). [CrossRef]
  11. F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, Ph. Grelu, F. Sanchez, “Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic,” Opt. Lett. 34(14), 2120–2122 (2009). [CrossRef] [PubMed]
  12. I. Will, H. I. Templin, S. Schreiber, W. Sandner, “Photoinjector drive laser of the FLASH FEL,” Opt. Express 19(24), 23770–23781 (2011). [CrossRef] [PubMed]
  13. M. Murakami, B. Liu, Z. Hu, Z. Liu, Y. Uehara, Y. Che, “Burst-mode femtosecond pulsed laser deposition for control of thin film morphology and material ablation,” Appl. Phys. Express 2(4), 042501 (2009). [CrossRef]
  14. P. Wu, W. R. Lempert, R. B. Miles, “Megahertz pulse-burst laser and visualization of shock-wave/boundary-layer interaction,” AIAA J. 38(4), 672–679 (2000). [CrossRef]
  15. B. S. Thurow, A. Satija, K. Lynch, “Third-generation megahertz-rate pulse burst laser system,” Appl. Opt. 48(11), 2086–2093 (2009). [CrossRef] [PubMed]
  16. P. Elahi, S. Yılmaz, Y. B. Eldeniz, F. Ö. Ilday, “Generation of picosecond pulses directly from a 100 W, burst-mode, doping-managed Yb-doped fiber amplifier,” Opt. Lett. 39(2), 236–239 (2014). [CrossRef] [PubMed]
  17. H. Kalaycıoğlu, Y. B. Eldeniz, Ö. Akçaalan, S. Yavaş, K. Gürel, M. Efe, F. Ö. Ilday, “1 mJ pulse bursts from a Yb-doped fiber amplifier,” Opt. Lett. 37(13), 2586–2588 (2012). [CrossRef] [PubMed]
  18. S. Breitkopf, A. Klenke, T. Gottschall, H. J. Otto, C. Jauregui, J. Limpert, A. Tünnermann, “58 mJ burst comprising ultrashort pulses with homogenous energy level from an Yb-doped fiber amplifier,” Opt. Lett. 37(24), 5169–5171 (2012). [CrossRef] [PubMed]
  19. J. Körner, J. Hein, H. Liebetrau, R. Seifert, D. Klöpfel, M. Kahle, M. Loeser, M. Siebold, U. Schramm, M. C. Kaluza, “Efficient burst mode amplifier for ultra-short pulses based on cryogenically cooled Yb3+:CaF2,” Opt. Express 21(23), 29006–29012 (2013). [CrossRef] [PubMed]
  20. L. Zhao, D. Tang, X. Wu, H. Zhang, “Dissipative soliton generation in Yb-fiber laser with an invisible intracavity bandpass filter,” Opt. Lett. 35(16), 2756–2758 (2010). [CrossRef] [PubMed]
  21. W. S. Man, H. Y. Tam, M. S. Demokan, P. K. A. Wai, D. Y. Tang, “Mechanism of intrinsic wavelength tuning and sideband asymmetry in a passively mode-locked soliton fiber ring laser,” J. Opt. Soc. Am. B 17(1), 28–33 (2000). [CrossRef]
  22. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  23. X. Tian, M. Tang, X. Cheng, P. P. Shum, Y. Gong, C. Lin, “High-energy wave-breaking-free pulse from all-fiber mode-locked laser system,” Opt. Express 17(9), 7222–7227 (2009). [CrossRef] [PubMed]
  24. L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett. 35(21), 3622–3624 (2010). [CrossRef] [PubMed]
  25. X. Tian, M. Tang, P. P. Shum, Y. Gong, C. Lin, S. Fu, T. Zhang, “High-energy laser pulse with a submegahertz repetition rate from a passively mode-locked fiber laser,” Opt. Lett. 34(9), 1432–1434 (2009). [CrossRef] [PubMed]
  26. H. Zhang, D. Y. Tang, X. Wu, L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express 17(15), 12692–12697 (2009). [CrossRef] [PubMed]
  27. A. Komarov, H. Leblond, F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005). [CrossRef]
  28. W. H. Renninger, A. Chong, F. W. Wise, “Area theorem and energy quantization for dissipative optical solitons,” J. Opt. Soc. Am. B 27(10), 1978–1982 (2010). [CrossRef] [PubMed]
  29. J. Liu, J. Xu, K. Liu, F. Tan, P. Wang, “High average power picosecond pulse and supercontinuum generation from a thulium-doped, all-fiber amplifier,” Opt. Lett. 38(20), 4150–4153 (2013). [CrossRef] [PubMed]
  30. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, “All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber,” Opt. Express 11(24), 3332–3337 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

Supplementary Material

» Media 1: MP4 (19984 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited