OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 6707–6718

Thermal lens evolution and compensation in a high power KGW Raman laser

Aaron McKay, Ondrej Kitzler, and Richard P. Mildren  »View Author Affiliations

Optics Express, Vol. 22, Issue 6, pp. 6707-6718 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2339 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The transient thermal lens in a high-average power double metal tungstate Raman laser has been investigated. An external cavity potassium gadolinium tungstate (KGW) laser designed for second-Stokes output was burst-pumped with up to 46 W of average power at a pulse repetition rate of 38 kHz. At low duty-cycle, the laser generated up to 18 W of on-time average Raman power with a conversion efficiency of 40%. At high duty cycle, efficiency is reduced and the near-field beam profile expands in the X1′ crystal direction over a period of tens of milliseconds. The evolution of the spatial beam properties occurs in response to the development of a highly astigmatic thermal lens with fast-axis susceptibility of approximately −1.7 m−1 per watt of Raman output power. We show that the likely cause for astigmatism is primarily photo-elastic in origin. Beam circularization was achieved by incorporating an intracavity convex cylindrical lens.

© 2014 Optical Society of America

OCIS Codes
(140.3550) Lasers and laser optics : Lasers, Raman
(140.6810) Lasers and laser optics : Thermal effects
(160.3380) Materials : Laser materials
(190.4870) Nonlinear optics : Photothermal effects
(290.5910) Scattering : Scattering, stimulated Raman
(140.3538) Lasers and laser optics : Lasers, pulsed

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 9, 2014
Revised Manuscript: March 5, 2014
Manuscript Accepted: March 6, 2014
Published: March 14, 2014

Aaron McKay, Ondrej Kitzler, and Richard P. Mildren, "Thermal lens evolution and compensation in a high power KGW Raman laser," Opt. Express 22, 6707-6718 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Chénais, F. Druon, S. Forget, F. Balembois, P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006). [CrossRef]
  2. H. M. Pask, S. Myers, J. A. Piper, J. Richards, T. McKay, “High average power, all-solid-state external resonator Raman laser,” Opt. Lett. 28(6), 435–437 (2003). [CrossRef] [PubMed]
  3. A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, M. Schmitt, R. Maksimenka, W. Kiefer, “Multimode pumped continuous-wave solid-state Raman laser,” Opt. Lett. 29(21), 2524–2526 (2004). [CrossRef] [PubMed]
  4. V. A. Lisinetskii, T. Riesbeck, H. Rhee, H. J. Eichler, V. A. Orlovich, “High average power generation in barium nitrate Raman laser,” Appl. Phys. B 99(1–2), 127–134 (2010). [CrossRef]
  5. R. Chulkov, V. Lisinetskii, O. Lux, H. Rhee, S. Schrader, H. J. Eichler, V. Orlovich, “Thermal aberrations and high power frequency conversion in a barium nitrate Raman laser,” Appl. Phys. B 106(4), 867–875 (2012). [CrossRef]
  6. T. T. Basiev, A. V. Gavrilov, V. V. Osiko, S. N. Smetanin, A. V. Fedin, “High-average-power SRS conversion of radiation in a BaWO4 crystal,” Quantum Electron. 34(7), 649–651 (2004). [CrossRef]
  7. X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, S. T. Li, Z. H. Cong, Z. J. Liu, S. Z. Fan, H. J. Zhang, “Diode side-pumped actively Q-switched Nd:YAG/SrWO4 Raman laser with high average output power of over 10 W at 1180 nm,” Laser Phys. Lett. 6(5), 363–366 (2009). [CrossRef]
  8. O. Kitzler, A. McKay, R. P. Mildren, “Continuous-wave wavelength conversion for high-power applications using an external cavity diamond Raman laser,” Opt. Lett. 37(14), 2790–2792 (2012). [CrossRef] [PubMed]
  9. A. McKay, H. Liu, O. Kitzler, R. P. Mildren, “An efficient 14.5 W diamond Raman laser at high pulse repetition rate with first (1240 nm) and second (1485 nm) Stokes output,” Laser Phys. Lett. 10(10), 105801 (2013). [CrossRef]
  10. J.-P. M. Feve, K. E. Shortoff, M. J. Bohn, J. K. Brasseur, “High average power diamond Raman laser,” Opt. Express 19(2), 913–922 (2011). [CrossRef] [PubMed]
  11. V. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers,” IEEE J. Quantum Electron. 48(3), 328–337 (2012). [CrossRef]
  12. R. P. Mildren, M. Convery, H. M. Pask, J. A. Piper, T. McKay, “Efficient, all-solid-state, Raman laser in the yellow, orange and red,” Opt. Express 12(5), 785–790 (2004). [CrossRef] [PubMed]
  13. R. P. Mildren, H. Ogilvy, J. A. Piper, “Solid-state Raman laser generating discretely tunable ultraviolet between 266 and 320 nm,” Opt. Lett. 32(7), 814–816 (2007). [CrossRef] [PubMed]
  14. I. V. Mochalov, “Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2:Nd3+-(KGW:Nd),” Opt. Eng. 36, 1660–1669 (1997). [CrossRef]
  15. R. P. Mildren, D. W. Coutts, D. J. Spence, “All-solid-state parametric Raman anti-Stokes laser at 508 nm,” Opt. Express 17(2), 810–818 (2009). [CrossRef] [PubMed]
  16. R. P. Mildren, “Side-pumped crystalline Raman laser,” Opt. Lett. 36(2), 235–237 (2011). [CrossRef] [PubMed]
  17. V. V. Filippov, “Athermal directions in KGd(WO4)2 and KLu(WO4)2 crystals under uniform heating,” Appl. Opt. 52(18), 4377–4384 (2013). [CrossRef] [PubMed]
  18. J. E. Hellström, S. Bjurshagen, V. Pasiskevicius, “Laser performance and thermal lensing in high-power diode-pumped Yb:KGW with athermal orientation,” Appl. Phys. B 83(1), 55–59 (2006). [CrossRef]
  19. A. McKay, O. Kitzler, R. P. Mildren, “High power tungstate-crystal Raman laser operating in the strong thermal lensing regime,” Opt. Express 22(1), 707–715 (2014). [CrossRef] [PubMed]
  20. S. Saghafi, C. Sheppard, J. A. Piper, “Characterising elegant and standard Hermite-Gaussian beam modes,” Opt. Commun. 191(3–6), 173–179 (2001). [CrossRef]
  21. K. L. Wlodarczyk, I. J. Thomson, H. J. Baker, D. R. Hall, “Generation of microstripe cylindrical and toroidal mirrors by localized laser evaporation of fused silica,” Appl. Opt. 51(26), 6352–6360 (2012). [CrossRef] [PubMed]
  22. W. Lubeigt, G. Valentine, J. Girkin, E. Bente, D. Burns, “Active transverse mode control and optimization of an all-solid-state laser using an intracavity adaptive-optic mirror,” Opt. Express 10(13), 550–555 (2002). [CrossRef] [PubMed]
  23. O. Silvestre, J. Grau, M. C. Pujol, J. Massons, M. Aguiló, F. Díaz, M. T. Borowiec, A. Szewczyk, M. U. Gutowska, M. Massot, A. Salazar, V. Petrov, “Thermal properties of monoclinic KLu(WO4)2 as a promising solid state laser host,” Opt. Express 16(7), 5022–5034 (2008). [CrossRef] [PubMed]
  24. A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28(4), 1057–1069 (1992). [CrossRef]
  25. W. Koechner, “Thermal Lensing in a Nd:YAG Laser Rod,” Appl. Opt. 9(11), 2548–2553 (1970). [CrossRef] [PubMed]
  26. P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, A. A. Pavlyuk, “Thermo-optic dispersion formulas for monoclinic double tungstates KRe(WO4)2 where Re=Gd, Y, Lu, Yb,” Opt. Mater. 33(11), 1688–1694 (2011). [CrossRef]
  27. M. M. Mazur, D. Y. Velikovskii, F. A. Kuznetsov, L. I. Mazur, A. A. Pavlyuk, V. E. Pozhar, V. I. Pustovoit, “Elastic and photoelastic properties of KGd(WO4)2 single crystals,” Acoust. Phys. 58(6), 658–665 (2012). [CrossRef]
  28. J. D. Foster, L. M. Osterink, “Thermal effects in a Nd:YAG laser,” J. Appl. Phys. 41(9), 3656–3663 (1970). [CrossRef]
  29. P. A. Loiko, I. A. Denisov, K. V. Yumashev, N. V. Kuleshov, A. A. Pavlyuk, “Laser performance and thermal lensing in flashlamp pumped Np-cut and Ng-cut Nd:KGW crystals,” Appl. Phys. B 100(3), 477–483 (2010). [CrossRef]
  30. G. M. Bonner, H. M. Pask, A. J. Lee, A. J. Kemp, J. Wang, H. Zhang, T. Omatsu, “Measurement of thermal lensing in a CW BaWO4 intracavity Raman laser,” Opt. Express 20(9), 9810–9818 (2012). [CrossRef] [PubMed]
  31. P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, A. A. Pavlyuk, “Detailed characterization of thermal expansion tensor in monoclinic KRe(WO4)2 (where Re=Gd, Y, Lu, Yb),” Opt. Mater. 34(1), 23–26 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (2009 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited