OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 6719–6733

Isolating quantum coherence using coherent multi-dimensional spectroscopy with spectrally shaped pulses

Jonathan O Tollerud, Christopher R Hall, and Jeffrey A Davis  »View Author Affiliations


Optics Express, Vol. 22, Issue 6, pp. 6719-6733 (2014)
http://dx.doi.org/10.1364/OE.22.006719


View Full Text Article

Enhanced HTML    Acrobat PDF (2665 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate how spectral shaping in coherent multidimensional spectroscopy can isolate specific signal pathways and directly access quantitative details. By selectively exciting pathways involving a coherent superposition of exciton states we are able to identify, isolate and analyse weak coherent coupling between spatially separated excitons in an asymmetric double quantum well. Analysis of the isolated signal elucidates details of the coherent interactions between the spatially separated excitons. With a dynamic range exceeding 104 in electric field amplitude, this approach facilitates quantitative comparisons of different signal pathways and a comprehensive description of the electronic states and their interactions.

© 2014 Optical Society of America

OCIS Codes
(300.0300) Spectroscopy : Spectroscopy
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(300.6470) Spectroscopy : Spectroscopy, semiconductors
(300.6530) Spectroscopy : Spectroscopy, ultrafast
(320.5540) Ultrafast optics : Pulse shaping

ToC Category:
Spectroscopy

History
Original Manuscript: January 20, 2014
Revised Manuscript: February 27, 2014
Manuscript Accepted: March 1, 2014
Published: March 14, 2014

Citation
Jonathan O Tollerud, Christopher R Hall, and Jeffrey A Davis, "Isolating quantum coherence using coherent multi-dimensional spectroscopy with spectrally shaped pulses," Opt. Express 22, 6719-6733 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-6-6719


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Hamm, M. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University Press, 2011). [CrossRef]
  2. H. Oschkinat, C. Griesinger, P. J. Kraulis, O. W. Sorensen, R. R. Ernst, A. M. Gronenborn, G. M. Clore, “3-dimensional nmr-spectroscopy of a protein in solution,” Nature 332, 374–376 (1988). [CrossRef] [PubMed]
  3. G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446, 782–786 (2007). [CrossRef] [PubMed]
  4. E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463, 644–649 (2010). [CrossRef] [PubMed]
  5. E. Collini, G. D. Scholes, “Coherent intrachain energy migration in a conjugated polymer at room temperature,” Science 323, 369–373 (2009). [CrossRef] [PubMed]
  6. J. Kasprzak, B. Patton, V. Savona, W. Langbein, “Coherent coupling between distant excitons revealed by two-dimensional nonlinear hyperspectral imaging,” Nature Photon. 5, 57–63 (2011). [CrossRef]
  7. M. A. Nielsen, I. L. Chuang, Quantum Information and Quantum Computation (Cambridge University Press, 2000).
  8. M. Mohseni, P. Rebentrost, S. Lloyd, A. Aspuru-Guzik, “Environment-assisted quantum walks in photosynthetic energy transfer,” J. Chem. Phys. 129, 174106 (2008). [CrossRef] [PubMed]
  9. T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005). [CrossRef] [PubMed]
  10. X. Q. Li, T. H. Zhang, C. N. Borca, S. T. Cundiff, “Many-body interactions in semiconductors probed by optical two-dimensional fourier transform spectroscopy,” Phys. Rev. Lett. 96, 057406 (2006). [CrossRef] [PubMed]
  11. D. B. Turner, R. Dinshaw, K.-K. Lee, M. S. Belsley, K. E. Wilk, P. M. G. Curmi, G. D. Scholes, “Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis,” Phys. Chem. Chem. Phys. 14, 4857–4874 (2012). [CrossRef] [PubMed]
  12. P. F. Tekavec, G. A. Lott, A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127, 214307 (2007). [CrossRef] [PubMed]
  13. D. B. Turner, K. W. Stone, K. Gundogdu, Keith A. Nelson, “Three-dimensional electronic spectroscopy of excitons in GaAs quantum wells” J. Chem. Phys. 131, 144510 (2009). [CrossRef] [PubMed]
  14. J. A. Davis, C. R. Hall, L. V. Dao, K. A. Nugent, H. M. Quiney, H. H. Tan, C. Jagadish, “Three-dimensional electronic spectroscopy of excitons in asymmetric double quantum wells,” J. of Chem. Phys. 135, 044510 (2011). [CrossRef]
  15. C. R. Hall, J. O. Tollerud, H. M. Quiney, J. A. Davis, “Three-dimensional electronic spectroscopy of excitons in asymmetric double quantum wells,” New J. Phys. 15, 045028 (2013). [CrossRef]
  16. H. Li, A. D. Bristow, M. E. Siemens, G. Moody, S. T. Cundiff, “Unraveling quantum pathways using optical 3D Fourier-transform spectroscopy,” Nat. Commun. 4, 1390 (2013). [CrossRef] [PubMed]
  17. D. B. Turner, K. W. Stone, K. Gundogdu, K. A. Nelson, “Invited article: The coherent optical laser beam recombination technique (colbert) spectrometer: Coherent multidimensional spectroscopy made easier,” Rev. Sci. Instrum. 82, 081301 (2011). [CrossRef] [PubMed]
  18. E. Read, G. Engel, T. Calhoun, T. Mancal, T. Ahn, R. E. Blankenship, G. R. Fleming, “Cross-peak-specific two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104, 14203–14208 (2007). [CrossRef] [PubMed]
  19. T. Zhang, I. Kuznetsova, T. Meier, X. Li, R. P. Mirin, P. Thomas, Steven T. Cundiff, “Polarization-dependent optical 2D Fourier transform spectroscopy of semiconductors” Proc. Natl. Acad. Sci. U.S.A. 104, 14227–14232 (2007). [CrossRef] [PubMed]
  20. D. B. Turner, K. A. Nelson, “Coherent measurements of high-order electronic correlations in quantum wells,” Nature 466, 1089–1092 (2010). [CrossRef] [PubMed]
  21. P. Wen, K. Nelson, “Selective enhancements in 2D fourier transform optical spectroscopy with tailored pulse shapes” J. Phys. Chem. A 117, 6380–6387 (2013). [CrossRef] [PubMed]
  22. G. H. Richards, K. E. Wilk, P. M. G. Curmi, H. M. Quiney, J. A. Davis, “Coherent vibronic coupling in light-harvesting complexes from photosynthetic marine algae,” J. Phys. Chem. Lett. 3, 272–277 (2012). [CrossRef]
  23. J. M. Womick, S. A. Miller, A. M. Moran, “Toward the origin of exciton electronic structure in phycobiliproteins,” J. Chem. Phys. 133, 024507 (2010). [CrossRef] [PubMed]
  24. H. Lee, Y. C. Cheng, G. R. Fleming, “Coherence dynamics in photosynthesis: Protein protection of excitonic coherence,” Science 316, 1462–1465 (2007). [CrossRef] [PubMed]
  25. G. H. Richards, K. E. Wilk, P. M. G. Curmi, J. A. Davis, “Disentangling electronic and vibrational coherence in the phycocyanin-645 light harvesting complex,” J. Phys. Chem. Lett. 5, 43–49 (2013). [CrossRef]
  26. J. Wright, “Multiresonant coherent multidimensional spectroscopy,” Annu. Rev. Phys. Chem. 62, 209–230 (2011). [CrossRef]
  27. B. Deveaud, A. Chomette, F. Clerot, P. Auvray, A. Regreny, R. Ferreira, G. Bastard, “Subpicosecond luminescence study of tunneling and relaxation in coupled quantum wells,” Phys. Rev. B 42, 7021 (1990). [CrossRef]
  28. K. Leo, J. Shah, E. O. Gobel, T. C. Damen, S. Schmitt-Rink, W. Schafer, K. Kohler, “Coherent oscillations of a wave packet in a semiconductor double-quantum-well structure,” Phys. Rev. Lett. 66, 201 (1991). [CrossRef] [PubMed]
  29. A. Perdomo, L. Vogt, A. Najmaie, A. Aspuru-Guzik, “Engineering directed excitonic energy transfer,” Appl. Phys. Lett. 96, 093114 (2010). [CrossRef]
  30. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994). [CrossRef] [PubMed]
  31. G. Nardin, G. Moody, R. Singh, T. M. Autry, H. Li, F. Morier-Genoud, S. T. Cundiff, “Coherent excitonic coupling in an asymmetric double ingaas quantum well arises from many body effects,” Phys. Rev. Lett. 112, 046402 (2014). [CrossRef]
  32. J. C. Vaughan, T. Hornung, T. Feurer, K. A. Nelson, “Diffraction-based femtosecond pulse shaping with a two-dimensional spatial light modulator,” Opt. Lett. 30, 323–325 (2005). [CrossRef] [PubMed]
  33. L. Yang, T. Zhang, A. D. Bristow, S. T. Cundiff, S. Mukamel, “Isolating excitonic Raman coherence in semiconductors using two-dimensional correlation spectroscopy,” J. Chem. Phys 129, 234711 (2008). [CrossRef] [PubMed]
  34. M. Koch, R. Hellmann, S. T. Cundiff, J. Feldmann, E. O. Gobel, D. R. Yakovlev, A. Waag, G. Landwehr, “Excitonic quantum beats in CdTe/CdMnTe quantum wells,” Sol. State Commun. 88, 515 (1993). [CrossRef]
  35. S. T Cundiff, “Effects of correlation between inhomogeneously broadened transitions on quantum beats in transient four-wave mixing,” Phys. Rev. A 493114–3118 (1994). [CrossRef] [PubMed]
  36. J. O. Tollerud, C. R. Hall, J. A. Davis, “Peak-shape analysis of isolated peaks in 3d coherent multidimensional spectroscopy,” In Preparation.
  37. D. B. Turner, P. Wen, D. H. Arias, K. A. Nelson, H. Li, G. Moody, M. E. Siemens, S. T. Cundiff, “Persistent exciton-type many-body interactions in GaAs quantum wells measured using two-dimensional optical spectroscopy,” Phys. Rev. B 85, 201303 (2012). [CrossRef]
  38. J. Yuen-Zhou, J. J. Krich, M. Mohseni, A. Aspuru-Guzik, “Quantum state and process tomography of energy transfer systems via ultrafast spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 108, 17615–17620 (2011). [CrossRef] [PubMed]
  39. J. Yuen-Zhou, D. H. Arias, D. M. Eisele, C. P. Steiner, J. J. Krich, M. Bawendi, K. A. Nelson, A. Aspuru-Guzik, “Coherent exciton dynamics in supramolecular light-harvesting nanotubes revealed by ultrafast quantum process tomography,” arXiv:1308.4566 (2013).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited