OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 6734–6748

Optimised quantum hacking of superconducting nanowire single-photon detectors

Michael G. Tanner, Vadim Makarov, and Robert H. Hadfield  »View Author Affiliations

Optics Express, Vol. 22, Issue 6, pp. 6734-6748 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1567 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We explore bright-light control of superconducting nanowire single-photon detectors (SNSPDs) in the shunted configuration (a practical measure to avoid latching). In an experiment, we simulate an illumination pattern the SNSPD would receive in a typical quantum key distribution system under hacking attack. We show that it effectively blinds and controls the SNSPD. The transient blinding illumination lasts for a fraction of a microsecond and produces several deterministic fake clicks during this time. This attack does not lead to elevated timing jitter in the spoofed output pulse, and hence does not introduce significant errors. Five different SNSPD chip designs were tested. We consider possible countermeasures to this attack.

© 2014 Optical Society of America

OCIS Codes
(030.5260) Coherence and statistical optics : Photon counting
(270.5570) Quantum optics : Quantum detectors
(270.5568) Quantum optics : Quantum cryptography

ToC Category:
Quantum Optics

Original Manuscript: January 14, 2014
Revised Manuscript: March 5, 2014
Manuscript Accepted: March 5, 2014
Published: March 14, 2014

Michael G. Tanner, Vadim Makarov, and Robert H. Hadfield, "Optimised quantum hacking of superconducting nanowire single-photon detectors," Opt. Express 22, 6734-6748 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. H. Bennett, G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in “Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing,” (IEEE Press, New York, Bangalore, India, 1984), pp. 175–179.
  2. QKD systems are available for purchase from several companies and research entities. Example commercial manufacturers are ID Quantique (Switzerland), http://www.idquantique.com , and SeQureNet (France), http://www.sequrenet.com/ .
  3. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997). [CrossRef]
  4. S. Barz, E. Kashefi, A. Broadbent, J. F. Fitzsimons, A. Zeilinger, P. Walther, “Demonstration of blind quantum computing,” Science 335, 303–308 (2012). [CrossRef] [PubMed]
  5. C. M. Natarajan, M. G. Tanner, R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Tech. 25, 063001 (2012). [CrossRef]
  6. R. H. Hadfield, J. L. Habif, J. Schlafer, R. E. Schwall, S. W. Nam, “Quantum key distribution at 1550 nm with twin superconducting single-photon detectors,” Appl. Phys. Lett. 89, 241129 (2006). [CrossRef]
  7. R. J. Collins, R. H. Hadfield, V. Fernandez, S. W. Nam, G. S. Buller, “Low timing jitter detector for gigahertz quantum key distribution,” Electron. Lett. 43, 180–182 (2007). [CrossRef]
  8. C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 3121–3124 (1992). [CrossRef] [PubMed]
  9. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007). [CrossRef]
  10. K. Inoue, E. Waks, Y. Yamamoto, “Differential phase shift quantum key distribution,” Phys. Rev. Lett. 89, 037902 (2002). [CrossRef] [PubMed]
  11. C. Gobby, Z. L. Yuan, A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. Lett. 84, 3762–3764 (2004). [CrossRef]
  12. D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, S. Ten, “High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres,” New J. Phys. 11, 075003 (2009). [CrossRef]
  13. D. Stucki, C. Barreiro, S. Fasel, J.-D. Gautier, O. Gay, N. Gisin, R. Thew, Y. Thoma, P. Trinkler, F. Vannel, H. Zbinden, “Continuous high speed coherent one-way quantum key distribution,” Opt. Express 17, 13326–13334 (2009). [CrossRef] [PubMed]
  14. S. Wang, W. Chen, J.-F. Guo, Z.-Q. Yin, H.-W. Li, Z. Zhou, G.-C. Guo, Z.-F. Han, “2 GHz clock quantum key distribution over 260 km of standard telecom fiber,” Opt. Lett. 37, 1008–1010 (2012). [CrossRef] [PubMed]
  15. H.-K. Lo, X. Ma, K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005). [CrossRef] [PubMed]
  16. D. Rosenberg, C. G. Peterson, J. W. Harrington, P. R. Rice, N. Dallmann, K. T. Tyagi, K. P. McCabe, S. Nam, B. Baek, R. H. Hadfield, R. J. Hughes, J. E. Nordholt, “Practical long-distance quantum key distribution system using decoy levels,” New J. Phys. 11, 045009 (2009). [CrossRef]
  17. Y. Liu, T.-Y. Chen, J. Wang, W.-Q. Cai, X. Wan, L.-K. Chen, J.-H. Wang, S.-B. Liu, H. Liang, L. Yang, C.-Z. Peng, K. Chen, Z.-B. Chen, J.-W. Pan, “Decoy-state quantum key distribution with polarized photons over 200 km,” Opt. Express 18, 8587–8594 (2010). [CrossRef] [PubMed]
  18. T. Honjo, S. W. Nam, H. Takesue, Q. Zhang, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, B. Baek, R. Hadfield, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, K. Inoue, Y. Yamamoto, “Long-distance entanglement-based quantum key distribution over optical fiber,” Opt. Express 16, 19118–19126 (2008). [CrossRef]
  19. A. Tanaka, M. Fujiwara, S. W. Nam, Y. Nambu, S. Takahashi, W. Maeda, K. Yoshino, S. Miki, B. Baek, Z. Wang, A. Tajima, M. Sasaki, A. Tomita, “Ultra fast quantum key distribution over a 97 km installed telecom fiber with wavelength division multiplexing clock synchronization,” Opt. Express 16, 11354–11360 (2008). [CrossRef] [PubMed]
  20. I. Choi, R. J. Young, P. D. Townsend, “Quantum key distribution on a 10Gb/s WDM-PON,” Opt. Express 18, 9600–9612 (2010). [CrossRef] [PubMed]
  21. M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD Network,” Opt. Express 19, 10387–10409 (2011). [CrossRef] [PubMed]
  22. P. J. Clarke, R. J. Collins, P. A. Hiskett, M. J. Garcia-Martinez, N. J. Krichel, A. McCarthy, M. G. Tanner, J. A. O’Connor, C. M. Natarajan, S. Miki, M. Sasaki, Z. Wang, M. Fujiwara, I. Rech, M. Ghioni, A. Gulinatti, R. H. Hadfield, P. D. Townsend, G. S. Buller, “Analysis of detector performance in a gigahertz clock rate quantum key distribution system,” New J. Phys. 13, 075008 (2011). [CrossRef]
  23. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013). [CrossRef]
  24. F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” (2014). arXiv:1401.6958 [quant-ph].
  25. A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, A. J. Shields, “Continuous operation of high bit rate quantum key distribution,” Appl. Phys. Lett. 96, 161102 (2010). [CrossRef]
  26. W. K. Wootters, W. H. Zurek, “A single quantum cannot be cloned,” Nature 299, 802–803 (1982). [CrossRef]
  27. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301 (2009). [CrossRef]
  28. Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, H.-K. Lo, “Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 042333 (2008). [CrossRef]
  29. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689 (2010). [CrossRef]
  30. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, V. Makarov, “Thermal blinding of gated detectors in quantum cryptography,” Opt. Express 18, 27938–27954 (2010). [CrossRef]
  31. H. Weier, H. Krauss, M. Rau, M. Fürst, S. Nauerth, H. Weinfurter, “Quantum eavesdropping without interception: an attack exploiting the dead time of single-photon detectors,” New J. Phys. 13, 073024 (2011). [CrossRef]
  32. M.-S. Jiang, S.-H. Sun, G.-Z. Tang, X.-C. Ma, C.-Y. Li, L.-M. Liang, “Intrinsic imperfection of self-differencing single-photon detectors harms the security of high-speed quantum cryptography systems,” Phys. Rev. A 88, 062335 (2013). [CrossRef]
  33. A. N. Bugge, S. Sauge, A. M. M. Ghazali, J. Skaar, L. Lydersen, V. Makarov, “Laser damage helps the eavesdropper in quantum cryptography,” Phys. Rev. Lett. 112, 070503 (2014). [CrossRef] [PubMed]
  34. L. Lydersen, M. K. Akhlaghi, A. H. Majedi, J. Skaar, V. Makarov, “Controlling a superconducting nanowire single-photon detector using tailored bright illumination,” New J. Phys. 13, 113042 (2011). [CrossRef]
  35. M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, M. Sasaki, “Characteristics of superconducting single photon detector in DPS-QKD system under bright illumination blinding attack,” Opt. Express 21, 6304–6312 (2013). [CrossRef] [PubMed]
  36. T. Honjo, M. Fujiwara, K. Shimizu, K. Tamaki, S. Miki, T. Yamashita, H. Terai, Z. Wang, M. Sasaki, “Countermeasure against tailored bright illumination attack for DPS-QKD,” Opt. Express 21, 2667–2673 (2013). [CrossRef] [PubMed]
  37. M. Ejrnaes, R. Cristiano, O. Quaranta, S. Pagano, A. Gaggero, F. Mattioli, R. Leoni, B. Voronov, G. Gol’tsman, “A cascade switching superconducting single photon detector,” Appl. Phys. Lett. 91, 262509 (2007). [CrossRef]
  38. F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. L. Hu, M. Csete, R. J. Molnar, K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11, 2048–2053 (2011). [CrossRef] [PubMed]
  39. M. G. Tanner, L. S. E. Alvarez, W. Jiang, R. J. Warburton, Z. H. Barber, R. H. Hadfield, “A superconducting nanowire single photon detector on lithium niobate,” Nanotechnology 23, 505201 (2012). [CrossRef] [PubMed]
  40. R. M. Heath, M. G. Tanner, A. Casaburi, M. G. Webster, L. San Emeterio Alvarez, W. Jiang, Z. H. Barber, R. J. Warburton, R. H. Hadfield, “Nano-optical observation of cascade switching in a parallel superconducting nanowire single photon detector,” Appl. Phys. Lett. 104, 063503 (2014). [CrossRef]
  41. M. Ejrnaes, A. Casaburi, R. Cristiano, O. Quaranta, S. Marchetti, N. Martucciello, S. Pagano, A. Gaggero, F. Mattioli, R. Leoni, P. Cavalier, J.-C. Villégier, “Timing jitter of cascade switch superconducting nanowire single photon detectors,” Appl. Phys. Lett. 95, 132503 (2009). [CrossRef]
  42. M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Ureña, T. Zijlstra, T. M. Klapwijk, V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96, 221109 (2010). [CrossRef]
  43. R. H. Hadfield, A. J. Miller, S. W. Nam, R. L. Kautz, R. E. Schwall, “Low-frequency phase locking in high-inductance superconducting nanowires,” Appl. Phys. Lett. 87, 203505 (2005). [CrossRef]
  44. J. A. O’Connor, M. G. Tanner, C. M. Natarajan, G. S. Buller, R. J. Warburton, S. Miki, Z. Wang, S. W. Nam, R. H. Hadfield, “Spatial dependence of output pulse delay in a niobium nitride nanowire superconducting single-photon detector,” Appl. Phys. Lett. 98, 201116 (2011). [CrossRef]
  45. J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE T. Appl. Supercon. 17, 581–585 (2007). [CrossRef]
  46. F. Marsili, F. Najafi, C. Herder, K. K. Berggren, “Electrothermal simulation of superconducting nanowire avalanche photodetectors,” Appl. Phys. Lett. 98, 093507 (2011). [CrossRef]
  47. V. Makarov, D. R. Hjelme, “Faked states attack on quantum cryptosystems,” J. Mod. Optic. 52, 691–705 (2005). [CrossRef]
  48. V. Makarov, “Controlling passively quenched single photon detectors by bright light,” New J. Phys. 11, 065003 (2009). [CrossRef]
  49. L. Lydersen, J. Skaar, V. Makarov, “Tailored bright illumination attack on distributed-phase-reference protocols,” J. Mod. Opt. 58, 680–685 (2011). [CrossRef]
  50. V. Burenkov, H. Xu, B. Qi, R. H. Hadfield, H.-K. Lo, “Investigations of afterpulsing and detection efficiency recovery in superconducting nanowire single-photon detectors,” J. Appl. Phys. 113, 213102 (2013). [CrossRef]
  51. A. Kerckhoffs, “La cryptographie militaire,” J. des Sciences Militaires IX, 5–38 (1883).
  52. I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, V. Makarov, “Full-field implementation of a perfect eavesdropper on a quantum cryptography system,” Nat. Commun. 2, 349 (2011). [CrossRef] [PubMed]
  53. H.-K. Lo, M. Curty, B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012). [CrossRef] [PubMed]
  54. S. L. Braunstein, S. Pirandola, “Side-channel-free quantum key distribution,” Phys. Rev. Lett. 108, 130502 (2012). [CrossRef] [PubMed]
  55. A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, W. Tittel, “A quantum key distribution system immune to detector attacks,” (2012). arXiv:1204.0738v2 [quant-ph].
  56. Z. L. Yuan, J. F. Dynes, A. J. Shields, “Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography,” Appl. Phys. Lett. 98, 231104 (2011). [CrossRef]
  57. L. Lydersen, V. Makarov, J. Skaar, “Comment on ‘Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography’,” Appl. Phys. Lett. 99, 196101 (2011). [CrossRef]
  58. Z. L. Yuan, J. F. Dynes, A. J. Shields, “Reply to “Comment on ‘Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography’”,” Appl. Phys. Lett. 99, 196102 (2011). [CrossRef]
  59. M. Legré, G. Ribordy, “Apparatus and method for the detection of attacks taking control of the single photon detectors of a quantum cryptography apparatus by randomly changing their efficiency,” intl. patent appl. WO 2012/046135 A2 (filed in 2010).
  60. H. Terai, S. Miki, T. Yamashita, K. Makise, Z. Wang, “Demonstration of single-flux-quantum readout operation for superconducting single-photon detectors,” Appl. Phys. Lett. 97, 112510 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited