OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 6772–6777

Bistability of time-periodic polarization dynamics in a free-running VCSEL

M. Virte, M. Sciamanna, E. Mercier, and K. Panajotov  »View Author Affiliations


Optics Express, Vol. 22, Issue 6, pp. 6772-6777 (2014)
http://dx.doi.org/10.1364/OE.22.006772


View Full Text Article

Enhanced HTML    Acrobat PDF (1624 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report experimentally a bistability between two limit cycles (i.e. time-periodic dynamics) in a free-running vertical-cavity surface-emitting laser. The two limit cycles originate from a bifurcation on two elliptically polarized states which exhibit a small frequency difference and whose main axes are symmetrical with respect to the linear polarization eigenaxes at threshold. We demonstrate theoretically that this peculiar behavior can be explained in the framework of the spin-flip model model by taking into account a small misalignment between the phase and amplitude anisotropies.

© 2014 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(190.3100) Nonlinear optics : Instabilities and chaos
(140.7260) Lasers and laser optics : Vertical cavity surface emitting lasers

ToC Category:
Nonlinear Optics

History
Original Manuscript: January 9, 2014
Revised Manuscript: February 28, 2014
Manuscript Accepted: March 3, 2014
Published: March 17, 2014

Virtual Issues
Physics and Applications of Laser Dynamics (2014) Optics Express

Citation
M. Virte, M. Sciamanna, E. Mercier, and K. Panajotov, "Bistability of time-periodic polarization dynamics in a free-running VCSEL," Opt. Express 22, 6772-6777 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-6-6772


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. D. Choquette, D. A. Richie, R. E. Leibenguth, “Temperature dependence of gain-guided vertical cavity surface emitting laser polarization,” Appl. Phys. Lett. 64, 2062–2064 (1994). [CrossRef]
  2. K. D. Choquette, R. P. Schneider, K. L. Lear, R. E. Leibenguth, “Gain-dependent polarization properties of vertical-cavity lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 661–666 (1995). [CrossRef]
  3. M. van Exter, M. Willemsen, J. Woerdman, “Polarization fluctuations in vertical-cavity semiconductor lasers,” Phys. Rev. A 58, 4191–4205 (1998). [CrossRef]
  4. T. Ackemann, M. Sondermann, “Characteristics of polarization switching from the low to the high frequency mode in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 78, 3574–3576 (2001). [CrossRef]
  5. M. Sondermann, T. Ackemann, S. Balle, J. Mulet, K. Panajotov, “Experimental and theoretical investigations on elliptically polarized dynamical transition states in the polarization switching of vertical-cavity surface-emitting lasers,” Opt. Commun. 235, 421–434 (2004). [CrossRef]
  6. L. Olejniczak, M. Sciamanna, H. Thienpont, K. Panajotov, A. Mutig, F. Hopfer, D. Bimberg, “Polarization switching in quantum-dot vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 21, 1008–1010 (2009). [CrossRef]
  7. L. Olejniczak, K. Panajotov, H. Thienpont, M. Sciamanna, A. Mutig, F. Hopfer, D. Bimberg, “Polarization switching and polarization mode hopping in quantum dot vertical-cavity surface-emitting lasers.” Opt. Express 19, 2476–2484 (2011). [CrossRef] [PubMed]
  8. M. Virte, K. Panajotov, H. Thienpont, M. Sciamanna, “Deterministic polarization chaos from a laser diode,” Nat. Photonics 7, 60–65 (2012). [CrossRef]
  9. K. Panajotov, F. Prati, Polarization dynamics of vcsels, in VCSELs (Springer, 2013), 181–231.
  10. K. Panajotov, B. Ryvkin, J. Danckaert, M. Peeters, H. Thienpont, I. Veretennicoff, “Polarization switching in VCSEL’s due to thermal lensing,” IEEE Photon. Technol. Lett. 10, 6–8 (1998). [CrossRef]
  11. M. San Miguel, Q. Feng, J. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52, 1728–1739 (1995). [CrossRef] [PubMed]
  12. J. Martin-Regalado, F. Prati, M. San Miguel, N. Abraham, “Polarization properties of vertical-cavity surface-emitting lasers,” IEEE J. Quant. Electron. 33, 765–783 (1997). [CrossRef]
  13. M. Virte, K. Panajotov, M. Sciamanna, “Bifurcation to nonlinear polarization dynamics and chaos in vertical-cavity surface-emitting lasers,” Phys. Rev. A 87, 013834 (2013). [CrossRef]
  14. F. Prati, P. Caccia, M. Bache, F. Castelli, “Analysis of elliptically polarized states in vertical-cavity-surface-emitting lasers,” Phys. Rev. A 69, 033810 (2004). [CrossRef]
  15. M. Travagnin, M. P. van Exter, A. K. Jansen van Doorn, J. P. Woerdman, “Role of optical anisotropies in the polarization properties of surface-emitting semiconductor lasers.” Phys. Rev. A 54, 1647–1660 (1996). [CrossRef] [PubMed]
  16. M. Travagnin, “Linear anisotropies and polarization properties of vertical-cavity surface-emitting semiconductor lasers,” Phys. Rev. A 56, 4094–4105 (1997). [CrossRef]
  17. F. Hopfer, A. Mutig, M. Kuntz, G. Fiol, D. Bimberg, N. N. Ledentsov, V. a. Shchukin, S. S. Mikhrin, D. L. Livshits, I. L. Krestnikov, a. R. Kovsh, N. D. Zakharov, P. Werner, “Single-mode submonolayer quantum-dot vertical-cavity surface-emitting lasers with high modulation bandwidth,” Appl. Phys. Lett. 89, 141106 (2006). [CrossRef]
  18. T. Erneux, J. Danckaert, K. Panajotov, I. Veretennicoff, “Two-variable reduction of the San MiguelFeng-Moloney model for vertical-cavity surface-emitting lasers,” Phys. Rev. A 59, 4660–4667 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited