OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 6778–6790

Fano resonances in a multimode waveguide coupled to a high-Q silicon nitride ring resonator

Dapeng Ding, Michiel J. A. de Dood, Jared F. Bauters, Martijn J. R. Heck, John E. Bowers, and Dirk Bouwmeester  »View Author Affiliations


Optics Express, Vol. 22, Issue 6, pp. 6778-6790 (2014)
http://dx.doi.org/10.1364/OE.22.006778


View Full Text Article

Enhanced HTML    Acrobat PDF (3800 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Silicon nitride (Si3N4) optical ring resonators provide exceptional opportunities for low-loss integrated optics. Here we study the transmission through a multimode waveguide coupled to a Si3N4 ring resonator. By coupling single-mode fibers to both input and output ports of the waveguide we selectively excite and probe combinations of modes in the waveguide. Strong asymmetric Fano resonances are observed and the degree of asymmetry can be tuned through the positions of the input and output fibers. The Fano resonance results from the interference between modes of the waveguide and light that couples resonantly to the ring resonator. We develop a theoretical model based on the coupled mode theory to describe the experimental results. The large extension of the optical modes out of the Si3N4 core makes this system promising for sensing applications.

© 2014 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(130.0130) Integrated optics : Integrated optics
(230.5750) Optical devices : Resonators
(230.7370) Optical devices : Waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: December 16, 2013
Revised Manuscript: March 5, 2014
Manuscript Accepted: March 7, 2014
Published: March 17, 2014

Citation
Dapeng Ding, Michiel J. A. de Dood, Jared F. Bauters, Martijn J. R. Heck, John E. Bowers, and Dirk Bouwmeester, "Fano resonances in a multimode waveguide coupled to a high-Q silicon nitride ring resonator," Opt. Express 22, 6778-6790 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-6-6778


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Xia, L. Sekaric, Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007). [CrossRef]
  2. B. E. Little, S. T. Chu, W. Pan, D. Ripin, T. Kaneko, Y. Kokubun, E. Ippen, “Vertically coupled glass microring resonator channel dropping filters,” IEEE Photon. Technol. Lett. 11, 215–217 (1999). [CrossRef]
  3. V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004). [CrossRef] [PubMed]
  4. A. Ksendzov, Y. Lin, “Integrated optics ring-resonator sensors for protein detection,” Opt. Lett. 30, 3344–3346 (2005). [CrossRef]
  5. S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80, 908–910 (2002). [CrossRef]
  6. C.-Y. Chao, L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527–1529 (2003). [CrossRef]
  7. A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett. 86, 261106 (2005). [CrossRef]
  8. A. C. Ruege, R. M. Reano, “Sharp Fano resonances from a two-mode waveguide coupled to a single-mode ring resonator,” J. Lightwave Technol. 28, 2964–2968 (2010). [CrossRef]
  9. A. C. Ruege, R. M. Reano, “Multimode waveguide-cavity sensor based on fringe visibility detection,” Opt. Express 17, 4295–4305 (2009). [CrossRef] [PubMed]
  10. B.-B. Li, Y.-F. Xiao, C.-L. Zou, Y.-C. Liu, X.-F. Jiang, Y.-L. Chen, Y. Li, Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98, 021116 (2011). [CrossRef]
  11. Y.-F. Xiao, L. He, J. Zhu, L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane-coated silica microtoroid,” Appl. Phys. Lett. 94, 231115 (2009). [CrossRef]
  12. B.-B. Li, Y.-F. Xiao, C.-L. Zou, X.-F. Jiang, Y.-C. Liu, F.-W. Sun, Y. Li, Q. Gong, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett. 100, 021108 (2012). [CrossRef]
  13. P. Rabiei, W. H. Steier, “Polymer microring resonators,” in Optical Microcavities, K. Vahala, eds. (World Scientific, 2005), pp. 321–324.
  14. S. Fan, W. Suh, J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20, 569–572 (2003). [CrossRef]
  15. J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19, 3163–3174 (2011). [CrossRef] [PubMed]
  16. M.-C. Tien, J. F. Bauters, M. J. R. Heck, D. T. Spencer, D. J. Blumenthal, J. E. Bowers, “Ultra-high quality factor planar Si3N4 ring resonators on Si substrates,” Opt. Express 19, 13551–13556 (2011). [CrossRef] [PubMed]
  17. R. M. Knox, P. P. Toulios, “Integrated circuits for the millimeter through optical frequency range,” in Proceedings of the Symposium on Submillimeter Waves, (Polytechnic Press, 1970), pp. 497–516.
  18. J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19, 24090–24101 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited