OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 6801–6809

Mid-IR beam direction stabilization scheme for vibrational spectroscopy, including dual-frequency 2DIR

Clara M. Nyby, Joel D. Leger, Jianan Tang, Clyde Varner, Victor V. Kireev, and Igor V. Rubtsov  »View Author Affiliations

Optics Express, Vol. 22, Issue 6, pp. 6801-6809 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1384 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A compact laser beam direction stabilization scheme is developed that provides the angular stability of better than 50 μrad over a wide range of frequencies from 800 to 4000 cm−1. The schematic is fully automated and features a single MCT quadrant detector. The schematic was tested to stabilize directions of the two IR beams used for dual-frequency two-dimensional infrared (2DIR) measurements and showed excellent results: automatic tuning of the beam direction allowed achieving the alignment quality within 10% of the optimal alignment obtained manually. The schematic can be easily implemented to any nonlinear spectroscopic measurements in the mid-IR spectral region.

© 2014 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:

Original Manuscript: December 26, 2013
Revised Manuscript: January 29, 2014
Manuscript Accepted: February 10, 2014
Published: March 17, 2014

Clara M. Nyby, Joel D. Leger, Jianan Tang, Clyde Varner, Victor V. Kireev, and Igor V. Rubtsov, "Mid-IR beam direction stabilization scheme for vibrational spectroscopy, including dual-frequency 2DIR," Opt. Express 22, 6801-6809 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. M. Hochstrasser, “Two-dimensional spectroscopy at infrared and optical frequencies,” Proc. Natl. Acad. Sci. U.S.A. 104(36), 14190–14196 (2007). [CrossRef] [PubMed]
  2. J. Zheng, M. D. Fayer, “Solute-solvent complex kinetics and thermodynamics probed by 2D-IR vibrational echo chemical exchange spectroscopy,” J. Phys. Chem. B 112(33), 10221–10227 (2008). [CrossRef] [PubMed]
  3. A. V. Pakoulev, M. A. Rickard, K. M. Kornau, N. A. Mathew, L. A. Yurs, S. B. Block, J. C. Wright, “Mixed frequency-/time-domain coherent multidimensional spectroscopy: research tool or potential analytical method?” Acc. Chem. Res. 42(9), 1310–1321 (2009). [CrossRef] [PubMed]
  4. S. Garrett-Roe, P. Hamm, “Purely absorptive three-dimensional infrared spectroscopy,” J. Chem. Phys. 130(16), 164510 (2009). [CrossRef] [PubMed]
  5. E. C. Fulmer, F. Ding, M. T. Zanni, “Heterodyned fifth-order 2D-IR spectroscopy of the azide ion in an ionic glass,” J. Chem. Phys. 122(3), 034302 (2005). [CrossRef] [PubMed]
  6. I. V. Rubtsov, J. Wang, R. M. Hochstrasser, “Dual-frequency 2D-IR spectroscopy heterodyned photon echo of the peptide bond,” Proc. Natl. Acad. Sci. U.S.A. 100(10), 5601–5606 (2003). [CrossRef] [PubMed]
  7. Z. Lin, P. Keiffer, I. V. Rubtsov, “A method for determining small anharmonicity values from 2DIR spectra using thermally induced shifts of frequencies of high-frequency modes,” J. Phys. Chem. B 115(18), 5347–5353 (2011). [CrossRef] [PubMed]
  8. S. R. Naraharisetty, V. M. Kasyanenko, I. V. Rubtsov, “Bond connectivity measured via relaxation-assisted two-dimensional infrared spectroscopy,” J. Chem. Phys. 128(10), 104502 (2008). [CrossRef] [PubMed]
  9. Z. Lin, B. Bendiak, I. V. Rubtsov, “Discrimination between coupling networks of glucopyranosides varying at a single stereocenter using two-dimensional vibrational correlation spectroscopy,” Phys. Chem. Chem. Phys. 14(18), 6179–6191 (2012). [CrossRef] [PubMed]
  10. I. V. Rubtsov, “Energy transport in molecules studied by relaxation-assisted 2DIR spectroscopy,” in Ultrafast Infrared Vibrational Spectroscopy, M. Fayer, ed. (Taylor and Francis, 2013), pp. 333–359.
  11. S. Grafström, U. Harbarth, J. Kowalski, R. Neumann, S. Noehte, “Fast laser beam position control with submicroradian precision,” Opt. Commun. 65(2), 121–126 (1988). [CrossRef]
  12. A. Stalmashonak, N. Zhavoronkov, I. V. Hertel, S. Vetrov, K. Schmid, “Spatial control of femtosecond laser system output with submicroradian accuracy,” Appl. Opt. 45(6), 1271–1274 (2006). [CrossRef] [PubMed]
  13. A. Schwarz, M. Ueffing, Y. Deng, X. Gu, H. Fattahi, T. Metzger, M. Ossiander, F. Krausz, R. Kienberger, “Active stabilization for optically synchronized optical parametric chirped pulse amplification,” Opt. Express 20(5), 5557–5565 (2012). [CrossRef] [PubMed]
  14. T. Kanai, A. Suda, S. Bohman, M. Kaku, S. Yamaguchi, K. Midorikawa, “Pointing stabilization of a high-repetition-rate high-power femtosecond laser for intense few-cycle pulse generation,” Appl. Phys. Lett. 92(6), 061106 (2008). [CrossRef]
  15. J. Liu, Y. Kida, T. Teramoto, T. Kobayashi, “Generation of stable sub-10 fs pulses at 400 nm in a hollow fiber for UV pump-probe experiment,” Opt. Express 18(5), 4664–4672 (2010). [CrossRef] [PubMed]
  16. R. A. Hardin, Y. Liu, C. Long, A. Aleksandrov, W. Blokland, “Active beam position stabilization of pulsed lasers for long-distance ion profile diagnostics at the Spallation Neutron Source (SNS),” Opt. Express 19(4), 2874–2885 (2011). [CrossRef] [PubMed]
  17. A. A. Ageichik, V. I. Venglyuk, S. A. Dimakov, O. G. Kotyaev, V. P. Kalinin, V. L. Okulov, Y. A. Rezunkov, A. L. Safronov, G. Y. Snezhkov, G. A. Sokolova, A. N. Starchenko, V. V. Stepanov, A. P. Shestakov, M. P. Bogdanov, V. I. Kuprenyuk, A. Y. Rodionov, V. E. Sherstobitov, V. V. Valuev, “Model experiments on position stabilization of a repetitively-pulsed CO2-laser beam on a distant detector with distortions in the propagation path,” J. Opt. Technol. 66(11), 945–953 (1999). [CrossRef]
  18. V. M. Kasyanenko, S. L. Tesar, G. I. Rubtsov, A. L. Burin, I. V. Rubtsov, “Structure dependent energy transport: Relaxation-assisted 2DIR measurements and theoretical studies,” J. Phys. Chem. B 115(38), 11063–11073 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited