OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 6810–6821

Demonstration of suppressed phonon tunneling losses in phononic bandgap shielded membrane resonators for high-Q optomechanics

Yeghishe Tsaturyan, Andreas Barg, Anders Simonsen, Luis Guillermo Villanueva, Silvan Schmid, Albert Schliesser, and Eugene S. Polzik  »View Author Affiliations


Optics Express, Vol. 22, Issue 6, pp. 6810-6821 (2014)
http://dx.doi.org/10.1364/OE.22.006810


View Full Text Article

Enhanced HTML    Acrobat PDF (5227 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Dielectric membranes with exceptional mechanical and optical properties present one of the most promising platforms in quantum opto-mechanics. The performance of stressed silicon nitride nanomembranes as mechanical resonators notoriously depends on how their frame is clamped to the sample mount, which in practice usually necessitates delicate, and difficult-to-reproduce mounting solutions. Here, we demonstrate that a phononic bandgap shield integrated in the membrane’s silicon frame eliminates this dependence, by suppressing dissipation through phonon tunneling. We dry-etch the membrane’s frame so that it assumes the form of a cm-sized bridge featuring a 1-dimensional periodic pattern, whose phononic density of states is tailored to exhibit one, or several, full band gaps around the membrane’s high-Q modes in the MHz-range. We quantify the effectiveness of this phononic bandgap shield by optical interferometry measuring both the suppressed transmission of vibrations, as well as the influence of frame clamping conditions on the membrane modes. We find suppressions up to 40 dB and, for three different realized phononic structures, consistently observe significant suppression of the dependence of the membrane’s modes on sample clamping—if the mode’s frequency lies in the bandgap. As a result, we achieve membrane mode quality factors of 5 × 106 with samples that are tightly bolted to the 8 K-cold finger of a cryostat. Q × f -products of 6 × 1012 Hz at 300 K and 14 × 1012 Hz at 8 K are observed, satisfying one of the main requirements for optical cooling of mechanical vibrations to their quantum ground-state.

© 2014 Optical Society of America

OCIS Codes
(120.7280) Instrumentation, measurement, and metrology : Vibration analysis
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.3990) Optical devices : Micro-optical devices
(160.3918) Materials : Metamaterials
(120.4880) Instrumentation, measurement, and metrology : Optomechanics

ToC Category:
Photonic Crystals

History
Original Manuscript: January 2, 2014
Revised Manuscript: March 3, 2014
Manuscript Accepted: March 8, 2014
Published: March 17, 2014

Citation
Yeghishe Tsaturyan, Andreas Barg, Anders Simonsen, Luis Guillermo Villanueva, Silvan Schmid, Albert Schliesser, and Eugene S. Polzik, "Demonstration of suppressed phonon tunneling losses in phononic bandgap shielded membrane resonators for high-Q optomechanics," Opt. Express 22, 6810-6821 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-6-6810


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. S. Verbridge, J. M. Parpia, R. B. Reichenbach, L. M. Bellan, H. G. Craighead, “High quality factor resonance at room temperature with nanostrings under high tensile stress,” J. Appl. Phys. 99, 124304 (2006). [CrossRef]
  2. Q. P. Unterreithmeier, T. Faust, J. P. Kotthaus, “Damping of nanomechanical resonators,” Phys. Rev. Lett. 105, 027205 (2010). [CrossRef] [PubMed]
  3. S. Schmid, K. D. Jensen, K. H. Nielsen, A. Boisen, “Damping mechanisms in high-Q micro and nanomechanical string resonators,” Phys. Rev. B 84, 165307 (2011). [CrossRef]
  4. B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, C. Bleszynski Jayich, J. D. Thomson, J. G. E. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett. 92, 103125 (2008). [CrossRef]
  5. D. J. Wilson, C. A. Regal, S. B. Papp, H. J. Kimble, “Cavity optomechanics with stoichiometric SiN films,” Phys. Rev. Lett. 103, 207204 (2009). [CrossRef]
  6. T. P. Purdy, R. W. Peterson, P.-L. Yu, C. A. Regal, “Cavity optomechanics with Si3N4 membranes at cryogenic temperatures,” New J. Phys. 14, 115021 (2012). [CrossRef]
  7. S. Chakram, Y. S. Patil, L. Chang, M. Vengalattore, “Dissipation in ultrahigh quality factor SiN membrane resonators,” arXiv:1311.1234 (2013).
  8. J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, J. G. E. Harris, “Strong dispersive coupling of a high finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008). [CrossRef] [PubMed]
  9. T. P. Purdy, R. W. Peterson, C. A. Regal, “Observation of radiation pressure shot noise on a macroscopic object,” Science 339, 801–804 (2013). [CrossRef] [PubMed]
  10. T. P. Purdy, P.-L. Yu, R. W. Peterson, N. S. Kampel, C. A. Regal, “Strong optomechanical squeezing of light,” Phys. Rev. X3, 031012 (2013).
  11. M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A88(2013). [CrossRef]
  12. T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sørensen, K. Usami, A. Schliesser, E. S. Polzik, “Optical detection of radio waves through a nanomechanical transducer,” arXiv:1307.3467 (2013).
  13. R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, K. W. Lehnert, “Reversible and efficient conversion between microwave and optical light,” arXiv:1310.5276 (2013).
  14. K. Hammerer, M. Aspelmeyer, E. Polzik, P. Zoller, “Establishing Einstein-Poldosky-Rosen channels between nanomechanics and atomic ensembles,” Phys. Rev. Lett. 102, 020501 (2009). [CrossRef] [PubMed]
  15. K. Hammerer, K. Stannigel, C. Genes, P. Zoller, P. Treutlein, S. Camerer, D. Hunger, T. W. Hänsch, “Optical lattices with micromechanical mirrors,” Phys. Rev. A 82, 021803 (2010). [CrossRef]
  16. D. R. Southworth, R. A. Barton, S. S. Verbridge, B. Ilic, A. D. Fefferman, H. G. Craighead, J. M. Parpia, “Stress and silicon nitride: A crack in the universal dissipation of glasses,” Phys. Rev. Lett. 102, 225503 (2009). [CrossRef] [PubMed]
  17. P.-L. Yu, T. P. Purdy, C. A. Regal, “Control of material damping in high-Q membrane microresonators,” Phys. Rev. Lett. 108, 083603 (2012). [CrossRef] [PubMed]
  18. T. Faust, J. Rieger, M. J. Seitner, J. P. Kotthaus, E. M. Weig, “Signatures of two-level defects in the temperature-dependent damping of nanomechanical silicon nitride resonators,” arXiv:1310.3671 (2013).
  19. V. P. Adiga, B. Ilic, R. A. Barton, I. Wilson-Rae, H. G. Craighead, J. M. Parpia, “Approaching intrinsic performance in ultra-thin silicon nitride drum resonators,” J. Appl. Phys. 112, 064323 (2012). [CrossRef]
  20. C. Enss, S. Hunklinger, Low Temperature Physics (Springer, 2005), Chap. 9, pp. 283–341.
  21. I. Wilson-Rae, “Intrinsic dissipation in nanomechanical resonators due to phonon tunneling,” Phys. Rev. B 77, 245418 (2008). [CrossRef]
  22. A. Jockel, M. T. Rakher, M. Korppi, S. Camerer, D. Hunger, M. Mader, P. Treutlein, “Spectroscopy of mechanical dissipation in micro-mechanical membranes,” Appl. Phys. Lett. 99, 143109 (2011). [CrossRef]
  23. M. Maldovan, E. L. Thomas, Periodic Materials and Interference Lithography for Photonics, Phononics and Mechanics (Wiley-VCH, 2009), Chap. 7, pp. 183–213.
  24. M. Maldovan, “Sound and heat revolutions in phononics,” Nature 503, 209–217 (2013). [CrossRef] [PubMed]
  25. T. P. Mayer Alegre, A. Safavi-Naeini, M. Winger, O. Painter, “Quasi-two-dimensional optomechanical crystals with a complete phononic bandgap,” Opt. Express 19, 5658–5669 (2011). [CrossRef]
  26. P.-L. Yu, K. Cicak, N. S. Kampel, Y. Tsaturyan, T. P. Purdy, R. W. Simmonds, C. A. Regal, “A phononic bandgap shield for high-q membrane microresonators,” Appl. Phys. Lett. 104, 023510 (2014). [CrossRef]
  27. A. Khelif, B. Aoubiza, S. Mohammadi, A. Adibi, V. Laude, “Complete band gaps in two-dimensional phononic crystal slabs,” Phys. Rev. E 74, 046610 (2006). [CrossRef]
  28. N. W. Ashcroft, N. D. Mermin, Solid State Physics, 1st ed. (Cengage Learning, 1976).
  29. G. S. May, S. M. Sze, Fundamentals of Semiconductor Fabrication, 1st ed. (John Wiley, 2003).
  30. A. H. Safavi-Naeini, O. Painter, “Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic-photonic crystal slab,” Opt. Express 18, 14926–14943 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited