OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 6822–6828

Low-noise parametric frequency comb for continuous C-plus-L-band 16-QAM channels generation

Eduardo Temprana, Vahid Ataie, Bill P.-P. Kuo, Evgeny Myslivets, Nikola Alic, and Stojan Radic  »View Author Affiliations


Optics Express, Vol. 22, Issue 6, pp. 6822-6828 (2014)
http://dx.doi.org/10.1364/OE.22.006822


View Full Text Article

Enhanced HTML    Acrobat PDF (1227 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A low phase noise frequency comb generated from a continuous-wave seed is experimentally demonstrated across continuous C- and L-bands. Parametrically generated carriers with optical signal-to-noise ratio in excess of 45dB were used to generate 16-ary quadrature amplitude modulated signals. We characterize 20 GBaud channels’ performance that was varied by only 1.7 dB across the combined C/L band.

© 2014 Optical Society of America

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes

ToC Category:
Optical Communications

History
Original Manuscript: January 2, 2014
Revised Manuscript: March 3, 2014
Manuscript Accepted: March 3, 2014
Published: March 17, 2014

Citation
Eduardo Temprana, Vahid Ataie, Bill P.-P. Kuo, Evgeny Myslivets, Nikola Alic, and Stojan Radic, "Low-noise parametric frequency comb for continuous C-plus-L-band 16-QAM channels generation," Opt. Express 22, 6822-6828 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-6-6822


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27(11), B51–B62 (2010). [CrossRef]
  2. B. Sprenger, J. Zhang, Z. H. Lu, L. J. Wang, “Atmospheric transfer of optical and radio frequency clock signals,” Opt. Lett. 34(7), 965–967 (2009). [CrossRef] [PubMed]
  3. H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express 14(12), 5223–5231 (2006). [CrossRef] [PubMed]
  4. P. Balling, P. Křen, P. Mašika, S. A. van den Berg, “Femtosecond frequency comb based distance measurement in air,” Opt. Express 17(11), 9300–9313 (2009). [CrossRef] [PubMed]
  5. A. Bartels, D. Heinecke, S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326(5953), 681 (2009). [CrossRef] [PubMed]
  6. R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000). [CrossRef] [PubMed]
  7. A. Schliesser, M. Brehm, F. Keilmann, D. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13(22), 9029–9038 (2005). [CrossRef] [PubMed]
  8. F. Quinlan, G. Ycas, S. Osterman, S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum. 81(6), 063105 (2010). [CrossRef] [PubMed]
  9. Z. Jiang, C.-B. Huang, D. E. Leaird, A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007). [CrossRef]
  10. N. K. Fontaine, D. J. Geisler, R. P. Scott, T. He, J. P. Heritage, S. J. B. Yoo, “Demonstration of high-fidelity dynamic optical arbitrary waveform generation,” Opt. Express 18(22), 22988–22995 (2010). [CrossRef] [PubMed]
  11. A. R. Chraplyvy, “The coming capacity crunch,” presented at the European Conference on Optical Communication 2009 (ECOC09), Vienna, Austria, 20–24September2009, plenary talk.
  12. S. T. Cundiff, J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003). [CrossRef]
  13. N. R. Newbury, W. C. Swann, “Low-noise fiber-laser frequency combs,” J. Opt. Soc. Am. B 24(8), 1756–1770 (2007). [CrossRef]
  14. A. Bartels, D. Heinecke, S. A. Diddams, “Passively mode-locked 10 GHz femtosecond Ti:sapphire laser,” Opt. Lett. 33(16), 1905–1907 (2008). [CrossRef] [PubMed]
  15. T. J. Kippenberg, R. Holzwarth, S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011). [CrossRef] [PubMed]
  16. P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008). [CrossRef] [PubMed]
  17. J. Pfeifle, M. Lauermann, D. Wegner, J. Li, K. Hartinger, V. Brasch, T. Herr, D. Hillerkuss, R. M. Schmogrow, T. Schimmel, R. Holzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-based frequency comb generator as optical source for coherent WDM transmission,” in Proc. OFC 2013 (2013), paper OW3C.2. [CrossRef]
  18. S. Fabbri, S. Sygletos, and A. Ellis, “Multi-harmonic optical comb generation,” in Proc. ECOC (2012), paper Mo.2.A.2.
  19. R. Maher, K. Shi, L. P. Barry, J. O’Carroll, B. Kelly, R. Phelan, J. O’Gorman, P. M. Anandarajah, “Implementation of a cost-effective optical comb source in a WDM-PON with 10.7 Gb/s data to each ONU and 50 km reach,” Opt. Express 18(15), 15672–15681 (2010). [CrossRef] [PubMed]
  20. J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-based optical frequency combs for high-bitrate WDM data transmission,” in Proc. OFC/NFOEC 2012 (2012), paper OW1C.4. [CrossRef]
  21. L. Barry, R. Watts, E. Martin, C. Browning, K. Merghem, C. Calò, A. Martinez, R. Rosales, and A. Ramdane, “Characterization of optical frequency combs for OFDM based optical transmission systems,” in Proc. International Conference on Fibre Optics and Photonics (2012), paper W2A.2. [CrossRef]
  22. Y. Wang, N. Chi, J. Zhang, S. Zou, “Investigation on the generation of coherent optical multi-carriers using cascaded phase modulators,” Proc. SPIE 8309, 83090R (2011). [CrossRef]
  23. R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35(19), 3234–3236 (2010). [CrossRef] [PubMed]
  24. J. M. Chavez Boggio, S. Moro, N. Alic, S. Radic, M. Karlsson, and J. Bland-Hawthorn, “Nearly octave-spanning cascaded four-wave-mixing generation in low dispersion highly nonlinear fiber” in Proc. ECOC2009 (2009), paper 9.1.2.
  25. B. P.-P. Kuo, E. Myslivets, N. Alic, S. Radic, “Wavelength multicasting via frequency comb generation in a bandwidth-enhanced fiber optical parametric mixer,” J. Lightwave Technol. 29(23), 3515–3522 (2011). [CrossRef]
  26. E. Myslivets, B. P. P. Kuo, N. Alic, S. Radic, “Generation of wideband frequency combs by continuous-wave seeding of multistage mixers with synthesized dispersion,” Opt. Express 20(3), 3331–3344 (2012). [CrossRef] [PubMed]
  27. B. P.-P. Kuo, E. Myslivets, V. Ataie, E. G. Temprana, N. Alic, S. Radic, “Wideband parametric frequency comb as coherent optical carrier,” J. Lightwave Technol. 31(21), 3414–3419 (2013). [CrossRef]
  28. V. Ataie, B. P.-P. Kuo, E. Myslivets, and S. Radic, “Generation of 1500-tone, 120nm-wide ultraflat frequency comb by single CW source,” in Proc. OFC2013 (2013), paper PDP5C.1. [CrossRef]
  29. Z. Tong, A. O. J. Wiberg, E. Myslivets, B. P. P. Kuo, N. Alic, S. Radic, “Spectral linewidth preservation in parametric frequency combs seeded by dual pumps,” Opt. Express 20(16), 17610–17619 (2012). [CrossRef] [PubMed]
  30. A. H. Gnauck, B. P.-P. Kuo, E. Myslivets, R. M. Jopson, M. Dinu, J. E. Simsarian, P. J. Winzer, and S. Radic, “Comb-based 16-QAM transmitter spanning the C and L bands,” to appear in IEEE Photon. Technol. Lett.
  31. T. Pfau, S. Hoffmann, R. Noe, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightwave Technol. 27(8), 989–999 (2009). [CrossRef]
  32. Z. Tong, A. O. J. Wiberg, E. Myslivets, B. P.-P. Kuo, N. Alic, S. Radic, “Spectral linewidth preservation in parametric frequency combs seeded by dual pumps,” Opt. Express 20(16), 17610–17619 (2012). [CrossRef] [PubMed]
  33. E. Ip, A. P. T. Lau, D. J. F. Barros, J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16(2), 753–791 (2008). [CrossRef] [PubMed]
  34. M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photonics Technol. Lett. 16(2), 674–676 (2004). [CrossRef]
  35. S. J. Savory, G. Gavioli, R. I. Killey, P. Bayvel, “Electronic compensation of chromatic dispersion using a digital coherent receiver,” Opt. Express 15(5), 2120–2126 (2007). [CrossRef] [PubMed]
  36. I. Fatadin, S. J. Savory, “Compensation of frequency offset for 16-QAM optical coherent systems using QPSK partitioning,” IEEE Photonics Technol. Lett. 23(17), 1246–1248 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited