OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 6829–6836

Signal processing method based on group delay calculation for distributed Bragg wavelength shift in optical frequency domain reflectometry

Daichi Wada, Hirotaka Igawa, Hideaki Murayama, and Tokio Kasai  »View Author Affiliations


Optics Express, Vol. 22, Issue 6, pp. 6829-6836 (2014)
http://dx.doi.org/10.1364/OE.22.006829


View Full Text Article

Enhanced HTML    Acrobat PDF (1085 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A signal processing method based on group delay calculations is introduced for distributed measurements of long-length fiber Bragg gratings (FBGs) based on optical frequency domain reflectometry (OFDR). Bragg wavelength shifts in interfered signals of OFDR are regarded as group delay. By calculating group delay, the distribution of Bragg wavelength shifts is obtained with high computational efficiency. We introduce weighted averaging process for noise reduction. This method required only 3.5% of signal processing time which was necessary for conventional equivalent signal processing based on short-time Fourier transform. The method also showed high sensitivity to experimental signals where non-uniform strain distributions existed in a long-length FBG.

© 2014 Optical Society of America

OCIS Codes
(060.2300) Fiber optics and optical communications : Fiber measurements
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Fiber Optics

History
Original Manuscript: January 14, 2014
Revised Manuscript: March 4, 2014
Manuscript Accepted: March 10, 2014
Published: March 17, 2014

Citation
Daichi Wada, Hirotaka Igawa, Hideaki Murayama, and Tokio Kasai, "Signal processing method based on group delay calculation for distributed Bragg wavelength shift in optical frequency domain reflectometry," Opt. Express 22, 6829-6836 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-6-6829


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Distributed Optical Fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985). [CrossRef]
  2. D. Culverhouse, F. Ferahi, C. N. Pannell, D. A. Jackson, “Exploitation of stimulated Brillouin scattering as a sensing mechanism for distributed temperature sensors and as a mean of realizing a tunable microwave generator,” Springer Proc. Phys. 44, 552–559 (1989). [CrossRef]
  3. M. Froggatt, J. Moore, “High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter,” Appl. Opt. 37(10), 1735–1740 (1998). [CrossRef] [PubMed]
  4. T. Kurashima, T. Horiguchi, M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15(18), 1038–1040 (1990). [CrossRef] [PubMed]
  5. X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13(7), 1340–1348 (1995). [CrossRef]
  6. Y. Sakairi, S. Matsuura, S. Adachi, and Y. Koyamada, “Prototype double-pulse BOTDR for measuring distributed strain with 20-cm spatial resolution,” presented at the 47th Annual Conference of the Society of Instrument and Control Engineers of Japan, Tokyo, Japan, 20–22 Aug. 2008. [CrossRef]
  7. Y. Mizuno, Z. He, K. Hotate, “Distributed strain measurement using a tellurite glass fiber with Brillouin optical correlation-domain reflectometry,” Opt. Commun. 283(11), 2438–2441 (2010). [CrossRef]
  8. K. Y. Song, Z. He, K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006). [CrossRef] [PubMed]
  9. S. Shen, Z. Wu, C. Yang, Y. Tang, G. Wu, W. Hong, “A new optical fiber sensor with improved strain sensitivity based on distributed optical fiber sensing technique,” Proc. SPIE 7293, 729315 (2009). [CrossRef]
  10. Y. Dong, X. Bao, W. Li, “Differential Brillouin gain for improving the temperature accuracy and spatial resolution in a long-distance distributed fiber sensor,” Appl. Opt. 48(22), 4297–4301 (2009). [CrossRef] [PubMed]
  11. L. Li, J. Yang, L. Liu, Z. Zhang, X. Chen, and M. Zhang, “Kilometers-range dark-pulse Brillouin optical time domain analyzer with centimeters spatial resolution,” presented at the 2010 Symposium on Photonics and Optoelectronics, Chengdu, China, 19–21 June 2010. [CrossRef]
  12. D. K. Gifford, S. T. Kreger, A. K. Sang, M. E. Froggatt, R. G. Duncan, M. S. Wolfe, B. J. Soller, “Swept-wavelength interferometric interrogation of fiber Rayleigh scatter for distributed sensing applications,” Proc. SPIE 6770, 67700F (2007). [CrossRef]
  13. S. T. Kreger, A. K. Sang, D. K. Gifford, M. E. Froggatt, “Distributed strain and temperature sensing in plastic optical fiber using Rayleigh scatter,” Proc. SPIE 7316, 73160A (2009). [CrossRef]
  14. H. Igawa, K. Ohta, T. Kasai, I. Yamaguchi, H. Murayama, K. Kageyama, “Distributed measurements with a long gauge FBG sensor using optical frequency domain reflectometry (1st report, system investigation using optical simulation model),” J. Solid Mech. Mater. Eng. 2(9), 1242–1252 (2008). [CrossRef]
  15. D. Wada, H. Murayama, H. Igawa, K. Kageyama, K. Uzawa, K. Omichi, “Simultaneous distributed measurement of strain and temperature by polarization maintaining fiber Bragg grating based on optical frequency domain reflectometry,” Smart Mater. Struct. 20(8), 085028 (2011). [CrossRef]
  16. D. Wada, H. Murayama, H. Igawa, “Lateral load measurements based on a distributed sensing system of optical frequency domain reflectometry using long-length fiber Bragg gratings,” J. Lightwave Technol. 30(14), 2337–2344 (2012). [CrossRef]
  17. H. Murayama, D. Wada, H. Igawa, “Structural Health Monitoring by Using Fiber-Optic Distributed Strain Sensors With High Spatial Resolution,” Photonic Sensors 3(4), 355–376 (2013). [CrossRef]
  18. D. K. Gifford, M. E. Froggatt, S. T. Kreger, “High precision, high sensitivity distributed displacement and temperature measurements using OFDR-based phase tracking,” Proc. SPIE 7753, 775331 (2011). [CrossRef]
  19. M. Volanthen, H. Geiger, J. P. Dakin, “Distributed grating sensors using low-coherence reflectometry,” J. Lightwave Technol. 15(11), 2076–2082 (1997). [CrossRef]
  20. A. K. Sang, M. E. Froggatt, S. T. Kreger, D. K. Gifford, “Millimeter resolution distributed dynamic strain measurements using optical frequency domain reflectometry,” Proc. SPIE 7753, 77532S (2011). [CrossRef]
  21. S. T. Kreger, A. K. Sang, N. Garg, J. Michel, “High resolution, high sensitivity, dynamic distributed structural monitoring using optical frequency domain reflectometry,” Proc. SPIE 8722, 87220D (2013). [CrossRef]
  22. D. P. Zhou, Z. Qin, W. Li, L. Chen, X. Bao, “Distributed vibration sensing with time-resolved optical frequency-domain reflectometry,” Opt. Express 20(12), 13138–13145 (2012). [CrossRef] [PubMed]
  23. D. Wada, H. Murayama, “Analytical investigation of response of birefringent fiber Bragg grating sensors in distributed monitoring system based on optical frequency domain reflectometry,” Opt. Lasers Eng. 52, 99–105 (2014). [CrossRef]
  24. D. Schlichtharle, Digital Filters Basics and Design 2nd Edition (Springer, 2010), Chap. 3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited