OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 6837–6843

Simultaneously improving the sensitivity and absolute accuracy of CPT magnetometer

Shang-Qing Liang, Guo-Qing Yang, Yun-Fei Xu, Qiang Lin, Zhi-Heng Liu, and Zheng-Xiang Chen  »View Author Affiliations

Optics Express, Vol. 22, Issue 6, pp. 6837-6843 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (981 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new method to improve the sensitivity and absolute accuracy simultaneously for coherent population trapping (CPT) magnetometer based on the differential detection method is presented. Two modulated optical beams with orthogonal circular polarizations are applied, in one of which two magnetic resonances are excited simultaneously by modulating a 3.4GHz microwave with Larmor frequency. When a microwave frequency shift is introduced, the difference in the power transmitted through the cell in each beam shows a low noise resonance. The sensitivity of 2pT/ Hz @ 10Hz is achieved. Meanwhile, the absolute accuracy of ± 0.5nT within the magnetic field ranging from 20000nT to 100000nT is realized.

© 2014 Optical Society of America

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(020.7490) Atomic and molecular physics : Zeeman effect

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: January 15, 2014
Revised Manuscript: February 28, 2014
Manuscript Accepted: February 28, 2014
Published: March 17, 2014

Shang-Qing Liang, Guo-Qing Yang, Yun-Fei Xu, Qiang Lin, Zhi-Heng Liu, and Zheng-Xiang Chen, "Simultaneously improving the sensitivity and absolute accuracy of CPT magnetometer," Opt. Express 22, 6837-6843 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. D. D. Schwindt, L. Hollberg, J. Kitching, “Self-oscillating rubidium magnetometer using nonlinear magneto-optical rotation,” Rev. Sci. Instrum. 76(12), 126103 (2005). [CrossRef]
  2. I. K. Kominis, T. W. Kornack, J. C. Allred, M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003). [CrossRef] [PubMed]
  3. V. Schultze, R. IJsselsteijn, H. G. Meyer, “Noise reduction in optically pumped magnetometer assemblies,” Appl. Phys. B 100(4), 717–724 (2010). [CrossRef]
  4. V. Sapunov, J. Rasson, A. Denisov, D. Saveliev, S. Kiselev, O. Denisova, Y. Podmogov, S. Khomutov, “Theodolite-borne vector Overhauser magnetometer: DIMOVER,” Earth Planets Space 58, 711–716 (2006).
  5. A. Pollinger, R. Lammegger, W. Magnes, M. Ellmeier, W. Baumjohann, and L. Windholz, “Control loops for a Coupled Dark State Magnetometer,” in Sensors (IEEE, 2010), 779–784.
  6. A. Pollinger, M. Ellmeier, W. Magnes, C. Hagen, W. Baumjohann, E. Leitgeb, R. Lammegger, “Enable the inherent omni-directionality of an absolute coupled dark state magnetometer for e.g. scientific space applications,” in Instrumentation and Measurement Technology Conference (I2MTC) (IEEE, 2012), 33–36. [CrossRef]
  7. P. Yun, B. Tan, W. Deng, J. Yang, S. Gu, “Quasi-bichromatic laser for a lin⊥lin coherent population trapping clock produced by vertical-cavity surface-emitting lasers,” Rev. Sci. Instrum. 83(9), 093111 (2012). [CrossRef] [PubMed]
  8. E. E. Mikhailov, T. Horrom, N. Belcher, I. Novikova, “Performance of a prototype atomic clock based on lin ‖ lin coherent population trapping resonances in Rb atomic vapor,” J. Opt. Soc. Am. B 27(3), 417–422 (2010). [CrossRef]
  9. A. L. Yang, G. Q. Yang, Y. F. Xu, Q. Lin, “High contrast atomic magnetometer based on coherent population trapping,” Chin. Phys. B. 23(2), 027601 (2014). [CrossRef]
  10. X. C. Liu, J. M. M’erolla, S. Gu’erandel, C. Gorecki, E. D. Clercq, R. Boudot, “Coherent-population-trapping resonances in buffer-gas-filled Cs-vapor cells with push-pull optical pumping,” Phys. Rev. A 87(1), 013416 (2013). [CrossRef]
  11. M. Rosenbluh, V. Shah, S. Knappe, J. Kitching, “Differentially detected coherent population trapping resonances excited by orthogonally polarized laser fields,” Opt. Express 14(15), 6588–6594 (2006). [CrossRef] [PubMed]
  12. J. Vanier, M. W. Levine, D. Janssen, M. Delaney, “Contrast and linewidth of the coherent population trapping transmission hyperfine resonance line in 87Rb: Effect of optical pumping,” Phys. Rev. A 67(6), 065801 (2003). [CrossRef]
  13. R. Jiménez-Martínez, W. C. Griffith, Y. J. Wang, S. Knappe, J. Kitching, K. Smith, and M. D. Prouty, “Sensitivity Comparison of Mx and Frequency-Modulated Bell–Bloom Cs Magnetometers in a Microfabricated Cell,” in Instrumentation and Measurement (IEEE, 2010), 372–378.
  14. Th. Haslwanter, H. Ritsch, J. Cooper, P. Zoller, “Laser-noise-induced population fluctuations in two- and three-level systems,” Phys. Rev. A 38(11), 5652–5659 (1988). [CrossRef] [PubMed]
  15. J. C. Camparo, “Conversion of laser phase noise to amplitude noise in an optically thick vapor,” Opt. Soc. Am. B 15(3), 1177–1186 (1998). [CrossRef]
  16. J. Kitching, N. Vukicevic, L. Hollberg, S. Knappe, R. Wynands, W. Weidemann, “A microwave frequency reference based on VCSEL driven dark line resonances in CS vapor,” IEEE Trans. Instrum. Meas. 49(6), 1313–1317 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited