OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 6881–6898

Quasi-droplet microbubbles for high resolution sensing applications

Yong Yang, Jonathan Ward, and Síle Nic Chormaic  »View Author Affiliations

Optics Express, Vol. 22, Issue 6, pp. 6881-6898 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1470 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical properties and sensing capabilities of fused silica microbubbles were studied numerically using a finite element method. Mode characteristics, such as quality factor (Q) and effective refractive index, were determined for different bubble diameters and shell thicknesses. For sensing applications with whispering gallery modes (WGMs), thinner shells yield improved sensitivity. However, the Q-factor decreases with reduced thickness and this limits the final resolution. Three types of sensing applications with microbubbles, based on their optimized geometrical parameters, were studied. Herein the so-called quasi-droplet regime is defined and discussed. It is shown that best resolution can be achieved when microbubbles act as quasi-droplets, even for water-filled cavities at the telecommunications C-band.

© 2014 Optical Society of America

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(140.3948) Lasers and laser optics : Microcavity devices
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:

Original Manuscript: February 3, 2014
Revised Manuscript: March 7, 2014
Manuscript Accepted: March 7, 2014
Published: March 17, 2014

Yong Yang, Jonathan Ward, and Síle Nic Chormaic, "Quasi-droplet microbubbles for high resolution sensing applications," Opt. Express 22, 6881-6898 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. J. Vahala, “Optical microcavities,” Nature (London) 424, 839–846 (2003). [CrossRef]
  2. L. N. He, S. K. Ozdemir, L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7, 60–82 (2013). [CrossRef]
  3. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature (London) 415, 621–623 (2002). [CrossRef]
  4. Y. Q. Wu, J. M. Ward, S. Nic Chormaic, “Ultralow threshold green lasing and optical bistability in ZBNA (ZrF4 − BaF2 − NaF− AlF3) microspheres,” J. Appl. Phys. 107, 033103 (2010). [CrossRef]
  5. T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature (London) 443, 671–674 (2006). [CrossRef]
  6. Y. S. Park, A. K. Cook, H. L. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6, 2075–2079 (2006). [CrossRef] [PubMed]
  7. T. J. Kippenberg, K. J. Vahala, “Cavity optomechanics,” Opt. Express 15, 17172–17205 (2007). [CrossRef] [PubMed]
  8. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, F. Vollmer, “Shift of whispering-gallery modes in micro-spheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003). [CrossRef] [PubMed]
  9. F. Vollmer, S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008). [CrossRef] [PubMed]
  10. M. Gregor, C. Pyrlik, R. Henze, A. Wicht, A. Peters, O. Benson, “An alignment-free fiber-coupled micro-sphere resonator for gas sensing applications,” Appl. Phys. Lett. 96, 231102 (2010). [CrossRef]
  11. C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009). [CrossRef]
  12. J. Ward, Y. Yang, S. Nic Chormaic, “Highly sensitive temperature measurements with liquid-core microbubble resonators,” IEEE Photon. Technol. Lett. 25, 2350 (2013). [CrossRef]
  13. R. Henze, T. Seifert, J. Ward, O. Benson, “Tuning whispering gallery modes using internal aerostatic pressure,” Opt. Lett. 36, 4536–4538 (2011). [CrossRef] [PubMed]
  14. V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J. M. Raimond, S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145, 86–90 (1998). [CrossRef]
  15. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007). [CrossRef] [PubMed]
  16. T. Beck, S. Schloer, T. Grossmann, T. Mappes, H. Kalt, “Flexible coupling of high-Q goblet resonators for formation of tunable photonic molecules,” Opt. Express 20, 22012–22017 (2012). [CrossRef] [PubMed]
  17. M. Sumetsky, Y. Dulashko, “SNAP: fabrication of long coupled microresonator chains with sub-angstrom precision,” Opt. Express 20, 27896–27901 (2012). [CrossRef] [PubMed]
  18. C.-L. Zou, F.-W. Sun, C.-H. Dong, F.-J. Shu, X.-W. Wu, J.-M. Cui, Y. Yang, Z.-F. Han, G.-C. Guo, “High-Q and unidirectional emission whispering gallery modes: Principles and design,” IEEE J. Sel. Top. Quantum Electron. 19, 1–6 (2013). [CrossRef]
  19. T. Oo, C. Dong, V. Fiore, H. Wang, “Evanescently coupled optomechanical system with SiN nanomechanical oscillator and deformed silica microsphere,” Appl. Phys. Lett. 103, 031116 (2013). [CrossRef]
  20. Y.-F. Xiao, C.-L. Zou, B.-B. Li, Y. Li, C.-H. Dong, Z.-F. Han, Q. H. Gong, “High-Q Exterior Whispering-Gallery Modes in a Metal-Coated Microresonator,” Phys. Rev. Lett. 105, 153902 (2010). [CrossRef]
  21. M. R. Disfani, M. S. Abrishamian, P. Berini, “Teardrop-shaped surface-plasmon resonators,” Opt. Express 20, 6472–6477 (2012). [CrossRef] [PubMed]
  22. Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, Q. H. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85, 031805 (2012). [CrossRef]
  23. I. M. White, H. Oveys, X. D. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31, 1319–1321 (2006). [CrossRef] [PubMed]
  24. M. Sumetsky, Y. Dulashko, R. S. Windeler, “Optical microbubble resonator,” Opt. Lett. 35, 898–900 (2010). [CrossRef] [PubMed]
  25. A. Watkins, J. Ward, Y. Q. Wu, S. Nic Chormaic, “Single-input spherical microbubble resonator,” Opt. Lett. 36, 2113–2115 (2011). [CrossRef] [PubMed]
  26. S. Berneschi, D. Farnesi, F. Cosi, G. N. Conti, S. Pelli, G. C. Righini, S. Soria, “High Q silica microbubble resonators fabricated by arc discharge,” Opt. Lett. 36, 3521–3523 (2011). [CrossRef] [PubMed]
  27. H. Li, Y. Guo, Y. Sun, K. Reddy, X. Fan, “Analysis of single nanoparticle detection by using 3-dimensionally confined optofluidic ring resonators,” Opt. Express 18, 25081–25088 (2010). [CrossRef] [PubMed]
  28. M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microwave Theory Tech. 55, 1209–1218 (2007). [CrossRef]
  29. M. I. Cheema, A. G. Kirk, “Accurate determination of the quality factor and tunneling distance of axisymmetric resonators for biosensing applications,” Opt. Express 21, 8724–8735 (2013). [CrossRef] [PubMed]
  30. G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013). [CrossRef] [PubMed]
  31. M. Cai, O. Painter, K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000). [CrossRef] [PubMed]
  32. S.-X. Qian, J. B. Snow, H.-M. Tzeng, R. K. Chang, “Lasing droplets: Highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986). [CrossRef] [PubMed]
  33. S. Uetake, R. S. D. Sihombing, K. Hakuta, “Stimulated raman scattering of a high-q liquid-hydrogen droplet in the ultraviolet region,” Opt. Lett. 27, 421–423 (2002). [CrossRef]
  34. W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99, 091102 (2011). [CrossRef]
  35. M. Sumetsky, Y. Dulashko, R. S. Windeler, “Super free spectral range tunable optical microbubble resonator,” Opt. Lett. 35, 1866–1868 (2010). [CrossRef] [PubMed]
  36. R. Henze, J. M. Ward, O. Benson, “Temperature independent tuning of whispering gallery modes in a cryogenic environment,” Opt. Express 21, 675–680 (2013). [CrossRef] [PubMed]
  37. J. D. Suter, I. M. White, H. Y. Zhu, X. D. Fan, “Thermal characterization of liquid core optical ring resonator sensors,” Appl. Opt. 46, 389–396 (2007). [CrossRef] [PubMed]
  38. I. M. White, H. Oveys, X. Fan, T. L. Smith, J. Y. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” Appl. Phys. Lett. 89, 191106 (2006). [CrossRef]
  39. I. M. White, H. Y. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, X. D. Fan, “Refractometric sensors for lab-on-a-chip based on optical. ring resonators,” IEEE Sensors J. 7, 28–35 (2007). [CrossRef]
  40. H. Li, X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97, 011105 (2010). [CrossRef]
  41. J. G. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. N. He, D. R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-q microresonator,” Nature Photon. 4, 122(2010). [CrossRef]
  42. A. Kaplan, M. Tomes, T. Carmon, M. Kozlov, O. Cohen, G. Bartal, H. G. L. Schwefel, “Finite element simulation of a perturbed axial-symmetric whispering-gallery mode and its use for intensity enhancement with a nanoparticle coupled to a microtoroid,” Opt. Express 21, 14169–14180 (2013). [CrossRef] [PubMed]
  43. M. Li, X. Wu, L. Liu, L. Xu, “Kerr parametric oscillations and frequency comb generation from dispersion compensated silica micro-bubble resonators,” Opt. Express 21, 16908–16913 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited