OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 6919–6924

Saturated gain spectrum of VECSELs determined by transient measurement of lasing onset

C. Robin Head, Keith G. Wilcox, Andrew P. Turnbull, Oliver J. Morris, Edward A. Shaw, and Anne C. Tropper  »View Author Affiliations


Optics Express, Vol. 22, Issue 6, pp. 6919-6924 (2014)
http://dx.doi.org/10.1364/OE.22.006919


View Full Text Article

Enhanced HTML    Acrobat PDF (1971 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe time-resolved measurements of the evolution of the spectrum of radiation emitted by an optically-pumped continuous-wave InGaAs-GaAs quantum well laser, recorded as lasing builds up from noise to steady state. We extract a fitting parameter corresponding to the gain dispersion of the parabolic spectrum equal to −79 ± 30 fs2 and −36 ± 6 fs2 for a resonant and anti-resonant structure, respectively. Furthermore the recorded evolution of the spectrum allows for the calculation of an effective FWHM gain bandwidth for each structure, of 11 nm and 18 nm, respectively.

© 2014 Optical Society of America

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(140.7090) Lasers and laser optics : Ultrafast lasers
(140.7260) Lasers and laser optics : Vertical cavity surface emitting lasers

ToC Category:
Nonlinear Optics

History
Original Manuscript: January 10, 2014
Revised Manuscript: March 6, 2014
Manuscript Accepted: March 7, 2014
Published: March 18, 2014

Virtual Issues
Physics and Applications of Laser Dynamics (2014) Optics Express

Citation
C. Robin Head, Keith G. Wilcox, Andrew P. Turnbull, Oliver J. Morris, Edward A. Shaw, and Anne C. Tropper, "Saturated gain spectrum of VECSELs determined by transient measurement of lasing onset," Opt. Express 22, 6919-6924 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-6-6919


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. C. Tropper, A. H. Quartermann, and K. G. Wilcox, Advances in Semiconductor Lasers, (Academic Press, 2012), Chap. 7.
  2. U. Keller, A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429(2), 67–120 (2006). [CrossRef]
  3. K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, W. Stolz, “4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express 21(2), 1599–1605 (2013). [CrossRef] [PubMed]
  4. M. Scheller, T.-L. Wang, B. Kunert, W. Stolz, S. W. Koch, J. V. Moloney, “Passively modelocked VECSEL emitting 682 fs pulses with 5.1 W of average output power,” Electron. Lett. 48(10), 588–589 (2012). [CrossRef]
  5. K. G. Wilcox, A. H. Quarterman, H. E. Beere, D. A. Ritchie, A. C. Tropper, “Variable repetition frequency femtosecond-pulse surface emitting semiconductor laser,” Appl. Phys. Lett. 99(13), 131107 (2011). [CrossRef]
  6. O. D. Sieber, V. J. Wittwer, M. Mangold, M. Hoffmann, M. Golling, T. Südmeyer, U. Keller, “Femtosecond VECSEL with tunable multi-gigahertz repetition rate,” Opt. Express 19(23), 23538–23543 (2011). [CrossRef] [PubMed]
  7. C. R. Head, H.-Y. Chan, J. S. Feehan, D. P. Shepherd, S. Alam, A. C. Tropper, J. H. V. Price, K. G. Wilcox, “Supercontinuum Generation With GHz Repetition Rate Femtosecond-Pulse Fiber-Amplified VECSELs,” IEEE Photon. Technol. Lett. 25(5), 1041–1135 (2013).
  8. M. C. Stumpf, S. Pekarek, A. E. H. Oehler, T. Südmeyer, J. M. Dudley, U. Keller, “Self-referenceable frequency comb from a 170-fs, 1.5-µm solid-state laser oscillator,” Appl. Phys. B 99(3), 401–408 (2010). [CrossRef]
  9. A. Bartels, D. Heinecke, S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326(5953), 681 (2009). [CrossRef] [PubMed]
  10. U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber,” Opt. Lett. 17(7), 505–507 (1992). [CrossRef] [PubMed]
  11. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996). [CrossRef]
  12. C. Borgentun, J. Bengtsson, A. Larsson, “Direct measurement of the spectral reflectance of OP-SDL gain elements under optical pumping,” Opt. Express 19(18), 16890–16897 (2011). [CrossRef] [PubMed]
  13. M. Mangold, V. J. Wittwer, O. D. Sieber, M. Hoffmann, I. L. Krestnikov, D. A. Livshits, M. Golling, T. Südmeyer, U. Keller, “VECSEL gain characterization,” Opt. Express 20(4), 4136–4148 (2012). [CrossRef] [PubMed]
  14. M. E. Barnes, Z. Mihoubi, K. G. Wilcox, A. H. Quarterman, I. Farrer, D. A. Ritchie, A. Garnache, S. Hoogland, V. Apostolopoulos, A. C. Tropper, “Gain bandwidth characterization of surface-emitting quantum well laser gain structures for femtosecond operation,” Opt. Express 18(20), 21330–21341 (2010). [CrossRef] [PubMed]
  15. C. R. Head, “Optical trapping and optical sources for nanophotonics,” Univ. of Southampton, Doctoral Thesis (2013). http://eprints.soton.ac.uk/359888/
  16. M. Kuznetsov, F. Hakimi, R. Sprague, A. Mooradian, “Design and characteristics of high-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron. 5(3), 561–573 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited