OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 6925–6933

Power budget improvement of symmetric 40-Gb/s DML-based TWDM-PON system

Meihua Bi, Shilin Xiao, Lilin Yi, Hao He, Jun Li, Xuelin Yang, and Weisheng Hu  »View Author Affiliations

Optics Express, Vol. 22, Issue 6, pp. 6925-6933 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1907 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a symmetric 40-Gb/s time and wavelength division multiplexed passive optical network (TWDM-PON) system with directly modulated laser (DML) as both downstream and upstream transmitters. A single bi-pass delay interferometer (DI), deployed in the optical line terminal (OLT), is used to mitigate multiple channels’ signal distortions induced by laser chirp and fiber chromatic dispersion. With the help of the DI, we successfully demonstrate error-free transmission with the aggregate capacity of 40 Gb/s over different transmission distance. And in back-to-back case, by using a 0.2-nm free spectrum range (FSR) DI, ~11 dB optical power budget improvement is achieved at a bit error ratio of 1e-3. Owing to this high power budget, the maximum reach can be extended to 50 km for 1024 splits, 75 km for 256 splits, and 100 km for 64 splits. Meanwhile, the impacts of FSR of DI and laser wavelength shift on system performance are investigated in terms of receiver sensitivity. It is shown that, our system can achieve more than 43-dB power budget and support ± 2.5-GHz wavelength shift when the FSR is less than 0.2 nm.

© 2014 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4250) Fiber optics and optical communications : Networks

ToC Category:
Optical Communications

Original Manuscript: November 1, 2013
Revised Manuscript: February 9, 2014
Manuscript Accepted: February 10, 2014
Published: March 18, 2014

Meihua Bi, Shilin Xiao, Lilin Yi, Hao He, Jun Li, Xuelin Yang, and Weisheng Hu, "Power budget improvement of symmetric 40-Gb/s DML-based TWDM-PON system," Opt. Express 22, 6925-6933 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Nakamura, “NG-PON2 Technology,” in Proc. OFC 2013, paper NTh4F.5 (2013).
  2. D. Iida, S. Kuwano, J. Kani, J. Terada, “Dynamic TWDM-PON for mobile radio access networks,” Opt. Express 21(22), 26209–26218 (2013). [CrossRef] [PubMed]
  3. C. W. Chow, C. H. Yeh, “Using downstream DPSK and upstream wavelength-shifted ASK for rayleigh backscattering mitigation in TDM-PON to WDM-PON migration scheme,” IEEE Photon. J. 5(2), 7900407 (2013). [CrossRef]
  4. N. Cvijetic, “OFDM for Next Generation Optical Access Networks,” J. Lightwave Technol. 30(4), 384–398 (2012). [CrossRef]
  5. S. Smolorz, E. Gottwald, H. Rohde, D. Smith, and A. Poustie, “Demonstration of a coherent UDWDM-PON with real-time processing,” in Proc. OFC, 2012, Paper PDPD4.
  6. K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, Y. C. Chung, C. Keun Yeong, H. Ui Hyun, Y. Takushima, A. Agata, T. Sano, M. Suzuki, Y. C. Chung, “103-Gb/s long-reach WDM PON implemented by using directly modulated RSOAs,” IEEE Photon. Technol. Lett. 24(3), 209–211 (2012). [CrossRef]
  7. Y. Luo, X. Zhou, F. Effenberger, X. Yan, G. Peng, Y. Qian, Y. Ma, “Time and Wavelength Division Multiplexed Passive Optical Network (TWDM-PON) for Next Generation PON Stage 2 (NG-PON2),” J. Lightwave Technol. 31(4), 587–593 (2013). [CrossRef]
  8. R. Murano and M. J. Cahill, “Low Cost Tunable Receivers for Wavelength Agile PONs,” in Proc. ECOC 2012, Paper We.2.B.3.
  9. Z. Li, L. Yi, M. Bi, J. Li, H. He, X. Yang, and W. Hu, “Experimental demonstration of a symmetric 40-Gb/s TWDM-PON,” in Proc. OFC 2013, Paper NTh4F.3. [CrossRef]
  10. L. Yi, Z. Li, M. Bi, W. Wei, W. Hu, “Symmetric 40-Gb/s TWDM-PON with 39dB Power Budget,” IEEE Photon. Technol. Lett. 25(7), 644–647 (2013). [CrossRef]
  11. P. P. Iannone, K. C. Reichmann, C. Brinton, J. Nakagawa, T. Cusick, E. M. Kimber, C. Doerr, L. L. Buhl, M. Cappuzzo, E. Y. Chen, L. Gomez, J. Johnson, A. M. Kanan, J. Lentz, Y. F. Chang, B. Palsdottir, T. Tokle, and L. Spiekman, “Bi-directionally amplified extended reach 40Gb/s CWDM-TDM PON with burst-mode upstream transmission,” in Proc. OFC 2011, Paper PDPD6. [CrossRef]
  12. Y. Ma, Y. Qian, G. Peng, X. Zhou, X. Wang, J. Yu, Y. Luo, X. Yan, and F. Effenberger, “Demonstration of a 40Gb/s time and wavelength division multiplexed passive optical network prototype system,” in proc. OFC2012, paper PDP5D.7.
  13. E. Wong, M. Mueller, M. C. Amann, “Characterization of energy-efficient and colorless ONUs for future TWDM-PONs,” Opt. Express 21(18), 20747–20761 (2013). [CrossRef] [PubMed]
  14. E. Wong, M. Mueller, M. C. Amann, “Colourless operation of short-cavity VCSELs in C-minus band for TWDM-PONs,” Ele. Lett. 49(4), 282–284 (2013). [CrossRef]
  15. M. Bi, S. Xiao, H. He, L. Yi, Z. Li, J. Li, X. Yang, W. Hu, “Simultaneous DPSK demodulation and chirp management using delay interferometer in symmetric 40-Gb/s capability TWDM-PON system,” Opt. Express 21(14), 16528–16535 (2013). [CrossRef] [PubMed]
  16. J. L. Wei, C. Sánchez, R. P. Giddings, E. Hugues-Salas, J. M. Tang, “Wavelength-Offset Filtering in Optical OFDM IMDD Systems Using Directly Modulated DFB Lasers,” J. Lightwave Technol. 29(18), 2861–2870 (2011). [CrossRef]
  17. C. R. Doerr, S. Chandrasekhar, P. J. Winzer, A. H. Gnauck, L. W. Stulz, R. Pafchek, E. Burrows, “Simple multichannel optical equalizer mitigating intersymbol interference for 40-Gb/s nonreturn-to-zero signals,” J. Lightwave Technol. 22(1), 249–256 (2004). [CrossRef]
  18. B. Wedding, B. Franz, B. Junginger, “10-Gb/s optical transmission up to 253 km via standard single-mode fiber using the method of dispersion-supported transmission,” J. Lightwave Technol. 12(10), 1720–1727 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited