OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 6934–6947

A concomitant and complete set of nonvolatile all-optical logic gates based on hybrid spatial solitons

L. L. Columbo, C. Rizza, M. Brambilla, F. Prati, and G. Tissoni  »View Author Affiliations

Optics Express, Vol. 22, Issue 6, pp. 6934-6947 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2256 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically demonstrate the realization of a complete canonical set of all-optical logic gates (AND, OR, NOT), with a persistent (stored) output, by combining propagative spatial solitons in a photorefractive crystal and dissipative cavity solitons in a downstream broad-area vertical cavity surface emitting laser (VCSEL). The system uses same-color, optical-axis aligned input and output channels with fixed readout locations, while switching from one gate to another is achieved by simply varying the potential applied to the photorefractive crystal. The inputs are Gaussian beams launched in the photorefractive crystal and the output is a bistable, persistent soliton in the VCSEL with a ’robust’ eye diagram and large signal-to-noise ratio (SNR). Fast switching and intrinsic parallelism suggest that high bit flow rates can be obtained.

© 2014 Optical Society of America

OCIS Codes
(190.5330) Nonlinear optics : Photorefractive optics
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Optics in Computing

Original Manuscript: November 22, 2013
Revised Manuscript: January 13, 2014
Manuscript Accepted: February 3, 2014
Published: March 18, 2014

L. L. Columbo, C. Rizza, M. Brambilla, F. Prati, and G. Tissoni, "A concomitant and complete set of nonvolatile all-optical logic gates based on hybrid spatial solitons," Opt. Express 22, 6934-6947 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. Firstenberg, T. Peyronel, Q. Liang, A. V. Gorshkov, M. D. Lukin, V. Vuletic, “Attractive photons in a quantum nonlinear medium,” Nature 502, 71–76 (2013). [CrossRef] [PubMed]
  2. R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tünnermann, S. Nolte, D. N. Christodulides, A. Szameit, “All-optical routing and switching for three-dimensional photonic circuitry,” Sci. Rep. 1(94) 1–6 (2011). [CrossRef]
  3. H. Wei, Z. Wang, X. Tian, M. Käll, H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2(387), 1–5 (2011). [CrossRef]
  4. T. Kanna, M. Lakshmanan, “Exact soliton solutions of coupled nonlinear Schrödinger equations: Shape-changing collisions, logic gates, and partially coherent solitons,” Phys. Rev. E 67, 046617(2003). [CrossRef]
  5. S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knödl, M. Miller, R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–702 (2002). [CrossRef] [PubMed]
  6. P. Genevet, S. Barland, M. Giudici, J. R. Tredicce, “Cavity soliton laser based on mutually coupled semiconductor microresonators,” Phys. Rev. Lett. 101, 123905 (2008). [CrossRef] [PubMed]
  7. F. Pedaci, P. Genevet, S. Barland, M. Giudici, J. R. Tredicce, “Positioning cavity solitons with a phase mask,” Appl. Phys. Lett. 89, 221111 (2006). [CrossRef]
  8. F. Pedaci, G. Tissoni, S. Barland, M. Giudici, J. Tredicce, “Mapping local defects of extended media using localized structures,” Appl. Phys. Lett. 93, 111104 (2008). [CrossRef]
  9. M. Eslami, R. Kheradmand, “All optical logic gates based on cavity solitons with nonlinear gain,” Opt. Rev. 19, 242–246 (2012). [CrossRef]
  10. T. Maggipinto, M. Brambilla, G. K. Harkness, W. J. Firth, “Cavity solitons in semiconductor microresonators: Existence, stability, and dynamical properties,” Phys. Rev. E 62, 8726–8739 (2000). [CrossRef]
  11. R. Landauer, “Irreversibility and heat generation in the computing process,” IBM J. Res. Dev. 5, 183–191 (1961). [CrossRef]
  12. A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, E. Lutz, “Experimental verification of Landauer’s principle linking information and thermodynamics,” Nature 483, 187–190 (2012). [CrossRef]
  13. L. Columbo, C. Rizza, M. Brambilla, F. Prati, G. Tissoni, “Controlling cavity solitons by means of photorefractive soliton electro-activation,” Opt. Lett. 37, 4696–4698 (2012). [CrossRef] [PubMed]
  14. R. McLeod, K. Wagner, S. Blair, “(3+1)-dimensional optical soliton dragging logic,” Phys. Rev. A 52, 3254–3278 (1995). [CrossRef] [PubMed]
  15. S. V. Serak, N. V. Tabiryan, M. Peccianti, G. Assanto, “Spatial soliton all-optical logic gates,” IEEE Photonics Technol. Lett. 18, 1287–1289 (2006). [CrossRef]
  16. A. Piccardi, A. Alberucci, U. Bertolozzo, S. Residori, G. Assanto, “Soliton gating and switching in liquid crystal light valve,” Appl. Phys. Lett. 96, 071104 (2010). [CrossRef]
  17. A. Jacobo, D. Gomila, M. A. Matias, P. Colet, “Logical operations with localized structures,” New J. Phys. 14, 013040 (2012). [CrossRef]
  18. M. Peccianti, C. Conti, G. Assanto, A. De Luca, C. Umeton, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335–3337 (2002). [CrossRef]
  19. H. Enderton, A Mathematical Introduction to Logic (Academic2001).
  20. N. Sapiens, A. Weissbrod, A. J. Agranat, “Fast electroholographic switching,” Opt. Lett. 34, 353–355 (2009). [CrossRef] [PubMed]
  21. E. DelRe, A. Ciattoni, E. Palange, “Role of charge saturation in photorefractive dynamics of micron-sized beams and departure from soliton behavior,” Phys. Rev. E 73, 017601 (2006). [CrossRef]
  22. A. Ciattoni, E. DelRe, A. Marini, C. Rizza, “Wiggling and bending-free micron-sized solitons in periodically biased photorefractives,” Opt. Express 16, 10867–10872 (2008). [CrossRef] [PubMed]
  23. M. Brambilla, L. A. Lugiato, F. Prati, L. Spinelli, W. J. Firth, “Spatial soliton pixels in semiconductor devices,” Phys. Rev. Lett. 79, 2042–2045 (1997). [CrossRef]
  24. L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, L. A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542–2559 (1998). [CrossRef]
  25. M. Segev, A. J. Agranat, “Spatial solitons in centrosymmetric photorefractive media,” Opt. Lett. 22, 1299–1301 (1997). [CrossRef]
  26. In all simulations, we used the following parameters: Lx= 200μ m, LPR= 1mm, LV= 2μ m, χ= 104, Na= 3.04 · 1022m−3, Nd= 101 · Na, nPR= 2.4, g= 0.13m4C−2, εr= 3 · 104, α= 5, θ= −2, C= 0.45, Ip= 2, τp= 11.7ps, nV= 3.5, τe= 1ns, R= 1 − T= 0.996 and LA= 50nm, EHB/(E0T)=0.77
  27. S. Gronenborn, J. Pollmann-Retsch, P. Pekarski, M. Miller, M. Strösser, J. Kolb, H. Mönch, P. Loosen, “High-power VCSELs with a rectangular aperture,” Appl. Phys B 105, 783–792 (2011). [CrossRef]
  28. E. DelRe, M. Tamburrini, A. J. Agranat, “Soliton electro-optic effects in paraelectrics,” Opt. Lett., 25, 963–965 (2000). [CrossRef]
  29. L. M. Surhone, M. T. Timpledon, S. F. Marseken, XOR Gate (Betascript, 2010).
  30. E. DelRe, B. Crosignani, P. Di Porto, “Chapter 3 Photorefractive solitons and their underlying nonlocal physics,” Prog. Opt. 53, 153–200 (2009). [CrossRef]
  31. X. Hachair, L. Furfaro, J. Javaloyes, M. Giudici, S. Balle, J. Tredicce, G. Tissoni, L. A. Lugiato, M. Brambilla, T. Maggipinto, “Cavity-solitons switching in semiconductor microcavities,” Phys. Rev. A 72, 013815 (2005). [CrossRef]
  32. M. Ahmed, M. Yamada, “Effect of intensity noise of semiconductor lasers on the digital modulation characteristics and the bit error rate of optical communication systems,” J. Appl. Phys. 104, 013104 (2008). [CrossRef]
  33. M. San Miguel, R. Toral, “Stochastic effects in physical systems,” in Nonlinear Phenomena and Complex Systems, Vol. 5 of Instabilities and Nonequilibrium Structures VI (Kluwer Academic, 2000), pp. 35–127. [CrossRef]
  34. C. H. Wu, F. Tan, M. K. Wu, M. Feng, N. Holonyak, “The effect of microcavity laser recombination lifetime on microwave bandwidth and eye-diagram signal integrity,” J. Appl. Phys. 109, 053112 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited