OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 6966–6975

A nonlinear plasmonic resonator for three-state all-optical switching

Muhammad Amin, Mohamed Farhat, and Hakan Bağcı  »View Author Affiliations

Optics Express, Vol. 22, Issue 6, pp. 6966-6975 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1990 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A nonlinear plasmonic resonator design is proposed for three-state all-optical switching at frequencies including near infrared and lower red parts of the spectrum. The tri-stable response required for three-state operation is obtained by enhancing nonlinearities of a Kerr medium through multiple (higher order) plasmons excited on resonator’s metallic surfaces. Indeed, simulations demonstrate that exploitation of multiple plasmons equips the proposed resonator with a multi-band tri-stable response, which cannot be obtained using existing nonlinear plasmonic devices that make use of single mode Lorentzian resonances. Multi-band three-state optical switching that can be realized using the proposed resonator has potential applications in optical communications and computing.

© 2014 Optical Society of America

OCIS Codes
(190.1450) Nonlinear optics : Bistability
(200.2610) Optics in computing : Free-space digital optics
(200.4660) Optics in computing : Optical logic
(250.5403) Optoelectronics : Plasmonics
(200.6715) Optics in computing : Switching

ToC Category:
Optics in Computing

Original Manuscript: December 9, 2013
Revised Manuscript: March 10, 2014
Manuscript Accepted: March 12, 2014
Published: March 18, 2014

Muhammad Amin, Mohamed Farhat, and Hakan Bağcı, "A nonlinear plasmonic resonator for three-state all-optical switching," Opt. Express 22, 6966-6975 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. Requicha, H. A. Atwater, “Plasmonics–A route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001). [CrossRef]
  2. W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef] [PubMed]
  3. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006). [CrossRef] [PubMed]
  4. Y. Cui, C. Zeng, “Optical bistability based on an analog of electromagnetically induced transparency in plasmonic waveguide-coupled resonators,” App. Opt. 51, 7482–7486 (2012). [CrossRef]
  5. M. Kauranen, A. V. Zayats, “Nonlinear plasmonics,” Nature Photon. 6, 737–748 (2012). [CrossRef]
  6. P.-Y. Chen, C. Argyropoulos, A. Alù, “Enhanced nonlinearities using plasmonic nanoantennas,” Nanopho-tonics 1, 221–233 (2012).
  7. F. Zhou, Y. Liu, Z.-Y. Li, Y. Xia, “Analytical model for optical bistability in nonlinear metal nano-antennae involving Kerr materials,” Opt. Express 18, 13337–13344 (2010). [CrossRef] [PubMed]
  8. P.-Y. Chen, A. Alù, “Optical nanoantenna arrays loaded with nonlinear materials,” Phys. Rev. B 82, 235405 (2010). [CrossRef]
  9. C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, A. Alù, “Boosting optical nonlinearities in e-near-zero plasmonic channels,” Phys. Rev. B 85, 045129 (2012). [CrossRef]
  10. C. Argyropoulos, P.-Y. Chen, F. Monticone, G. D’Aguanno, A. Alù, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108, 263905 (2012). [CrossRef] [PubMed]
  11. P.-Y. Chen, M. Farhat, A. Alù, “Bistable and self-tunable negative-index metamaterial at optical frequencies,” Phys. Rev. Lett. 106, 105503 (2011). [CrossRef] [PubMed]
  12. P.-Y. Chen, C. Argyropoulos, A. Alù, “Optical Antennas and Enhanced Nonlinear Effects,” in Rectenna Solar Cells (Springer, 2013). [CrossRef]
  13. X.-B. Kang, H.-D. Li, J. Ding, Z.-G. Wang, “Fano resonance and step-like transmission via guide-mode resonance structure,” Opt. Lett. 38, 715–717 (2013). [CrossRef] [PubMed]
  14. N. Mattiucci, G. D’Aguanno, M. J. Bloemer, “Mode-matched Fano resonances for all-optical switching applications,” Opt. Commun. 285, 1945–1948 (2012). [CrossRef]
  15. N. Mattiucci, G. D’Aguanno, M. J. Bloemer, “Long range plasmon assisted all-optical switching at telecommunication wavelengths,” Opt. Lett. 37, 121–123 (2012). [CrossRef] [PubMed]
  16. G. D’Aguanno, D. de Ceglia, N. Mattiucci, M. Bloemer, “All-optical switching at the Fano resonances in subwavelength gratings with very narrow slits,” Opt. Lett. 36, 1984–1986 (2011). [CrossRef] [PubMed]
  17. N. Mattiucci, M. J. Bloemer, G. D’Aguanno, “Giant field localization in 2-D photonic crystal cavities with defect resonances: Bringing nonlinear optics to the W/cm2 level,” AIP Advances 2, 032112 (2012). [CrossRef]
  18. T. Baba, “Slow light in photonic crystals,” Nature Photon. 2, 465–473 (2008). [CrossRef]
  19. T. F. Krauss, “Why do we need slow light?,” Nature Photon. 2, 448–450 (2008). [CrossRef]
  20. A. B. Forouzan, Data Communications & Networking (Tata McGraw-Hill Education, 2007).
  21. B. Holdworth, C. Woods, Digital Logic Design (Elsevier, 1994).
  22. V. R. Tuz, S. L. Prosvirnin, “Bistability, multistability, and nonreciprocity in a chiral photonic bandgap structure with nonlinear defect,” J. Opt. Soc. Am. B 28, 1002–1008 (2011). [CrossRef]
  23. G. Victor, F. Biancalana, “Bistability, multistability and non-reciprocal light propagation in Thue–Morse multilayered structures,” New J. Phys. 12, 053041 (2010). [CrossRef]
  24. G. Victor, F. Biancalana, “Resonant self-pulsations in coupled nonlinear microcavities,” Phys. Rev. A 83, 043816 (2011). [CrossRef]
  25. D. Yannick, F. Patrice, “Stability and time-domain analysis of the dispersive tristability in microresonators under modal coupling,” Phys. Rev. A 84, 043847 (2011). [CrossRef]
  26. P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972). [CrossRef]
  27. R. W. Boyd, Nonlinear Optics (Academic Press, 2003).
  28. M. Rahmani, B. Luk’yanchuk, M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photon. Rev. 7, 329–349 (2013). [CrossRef]
  29. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nature Mater. 9, 707–715 (2010). [CrossRef]
  30. M. Amin, H. Bağcı, “Investigation of Fano resonances induced by higher order plasmon modes on a circular nano-disk with an elongated cavity,” Prog. Electromag. Res. 130, 187–206 (2012). [CrossRef]
  31. M. Amin, M. Farhat, H. Bağcı, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep. 3, 2105 (2013). [CrossRef] [PubMed]
  32. M. Amin, M. Farhat, H. Bağcı, “An ultra-broadband multilayered graphene absorber,” Opt. Express 21, 29938–29948 (2013). [CrossRef]
  33. F. Zhang, W. Liu, Z. Xue, J. Wu, S. Wang, D. Wang, Q. Gong, “Ultrafast optical Kerr effect of Ag-BaO composite thin films,” Appl. Phys. Lett. 82, 958–960 (2003). [CrossRef]
  34. B. Gallinet, O. J. Martin, “Relation between near-field and far-field properties of plasmonic Fano resonances,” Opt. Express 19, 221675 (2011). [CrossRef]
  35. Q. Zhang, C. Qin, K. Chen, M. Xiong, X. Zhang, “Novel optical multi-bistability and multistability characteristics of coupled active microrings,” IEEE J. Quantum Electron. 49, 365–374 (2013). [CrossRef]
  36. A. Taflove, S. C. Hagness, Computational Electrodynamics (Artech house, 2000).
  37. S. Thomas, Nonlinear Optics in Telecommunications (Springer, 2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited