OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 6984–6995

Electronic dispersion compensation in a 50 Gb/s optically unamplified direct-detection receiver enabled by vestigial-sideband orthogonal frequency division multiplexing

William A. Ling and Ilya Lyubomirsky  »View Author Affiliations


Optics Express, Vol. 22, Issue 6, pp. 6984-6995 (2014)
http://dx.doi.org/10.1364/OE.22.006984


View Full Text Article

Enhanced HTML    Acrobat PDF (1336 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a novel method for dispersion compensation based on vestigial-sideband transmission of an orthogonal frequency division multiplexed signal through standard signal-mode fiber with a direct-detection receiver. This technique requires simpler optical components and can withstand greater link attenuation and splitting ratios than similar methods previously studied, making the method ideal for optically unamplified receivers, such as those in passive optical networks. We present simulations as well as experimental measurements to demonstrate its practicality.

© 2014 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4080) Fiber optics and optical communications : Modulation
(060.4510) Fiber optics and optical communications : Optical communications

ToC Category:
Optical Communications

History
Original Manuscript: December 27, 2013
Revised Manuscript: February 28, 2014
Manuscript Accepted: March 1, 2014
Published: March 18, 2014

Citation
William A. Ling and Ilya Lyubomirsky, "Electronic dispersion compensation in a 50 Gb/s optically unamplified direct-detection receiver enabled by vestigial-sideband orthogonal frequency division multiplexing," Opt. Express 22, 6984-6995 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-6-6984


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Z. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, T. Drenski, “100 Gb/s optical IM-DD transmission with 10G-class devices enabled by 65 GSamples/s CMOS DAC core,” “OFC/NFOEC 2013” (Anaheim, USA, 2013), p. OM3H.1.
  2. I. Dedic, “56Gs/s ADC: Enabling 100GbE,” “OFC/NFOEC 2010,” (San Diego, USA, 2010), p. OThT6.
  3. X. Chen, A. Li, D. Che, Q. Hu, Y. Wang, J. He, W. Shieh, “High-speed fading-free direct detection for double-sideband OFDM signal via block-wise phase switching,” “OFC/NFOEC,” (2013), p. PDP5B.7.
  4. X. Chen, A. Li, Q. Hu, J. He, Y. W. D. Che, W. Shieh, “Demonstration of direct detected optical OFDM signals via block-wise phase switching,” J. Lightw. Technol. 32, 722–728 (2014). [CrossRef]
  5. D. F. Hewitt, “Orthogonal frequency division multiplexing using baseband optical single sideband for simpler adaptive dispersion compensation,” in “Proc. Eur. Conf. Opt. Commun.”, (2007), p. OME7.
  6. M. Schuster, B. Spinnler, C. A. Bunge, K. Petermann, “Spectrally efficient OFDM-transmission with compatible single-sideband modulation for direct detection,” in “Proc. Eur. Conf. Opt. Commun.”, (Berlin, Germany, 2007), pp. 1–2.
  7. M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett. 20, 670–672 (2008). [CrossRef]
  8. J. L. Wei, X. Q. Jin, J. M. Tang, “The influence of directly modulated DFB lasers on the transmission performance of carrier-suppressed single-sideband optical OFDM signals over IMDD SMF systems,” J. Lightw. Technol. 27, 2412–2419 (2009). [CrossRef]
  9. B. J. C. Schmidt, A. J. Lowery, J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM,” J. Lightw. Technol. 27, 196–203 (2008). [CrossRef]
  10. W. R. Peng, X. X. Wu, V. R. Arbab, K. M. Feng, B. Shamee, L. C. Christen, J. Y. Yang, A. E. Willner, S. Chi, “Theoretical and experimental investigations of direct-detected RF-tone-assisted optical OFDM systems,” J. Lightw. Technol. 27, 1332–1339 (2009). [CrossRef]
  11. W. R. Peng, B. Zhang, K. M. Feng, X. X. Wu, A. E. Willner, S. Chi, “Spectrally efficient direct-detected OFDM transmission incorporating a tunable frequency gap and an iterative detection techniques,” J. Lightw. Technol. 27, 5723–5735 (2009). [CrossRef]
  12. W. R. Peng, I. Morita, H. Tanaka, “Enabling high capacity direct-detection optical OFDM transmissions using beat interference cancellation receiver,” in “Proc. Eur. Conf. Opt. Commun.”, (Torino, Italy, 2010), p. Tu.4.A.2.
  13. S. A. Nezamalhosseini, L. R. Chen, Q. B. Zhuge, M. Malekiha, F. Marvasti, D. V. Plant, “Theoretical and experimental investigation of direct detection optical OFDM transmission using beat interference cancellation receiver,” Opt. Express 21, 15237–15246 (2013). [CrossRef] [PubMed]
  14. B. J. C. Schmidt, Z. Zan, L. B. Du, A. J. Lowery, “120 Gbit/s over 500-km using single-band polarization-multiplexed self-coherent optical OFDM,” J. Lightw. Technol. 28, 328–335 (2010). [CrossRef]
  15. D. Y. Qian, N. Cvijetic, J. Q. Hu, T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightw. Technol. 28, 484–493 (2010). [CrossRef]
  16. G. H. Smith, D. Novak, Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Techn. 45, 1410–1415 (1997). [CrossRef]
  17. M. Sieben, J. Conradi, D. E. Dodds, “Optical single sideband transmission at 10 Gb/s using only electrical dispersion compensation,” J. Lightw. Technol. 17, 1742–1749 (1999). [CrossRef]
  18. N. Cvijetic, “OFDM for next-generation optical access networks,” J. Lightw. Technol. 30, 384–398 (2012). [CrossRef]
  19. C. K. Madsen, J. H. Zhao, Optical Filter Design and Analysis (Wiley Interscience, 1999). [CrossRef]
  20. G. P. Agrawal, Fiber-Optic Communication Systems (John Wiley and Sons, 2002). [CrossRef]
  21. J. M. Cioffi, G. P. Dudevoir, M. V. Eyuboglu, G. D. Forney, “MMSE decision-feedback equalizers and coding-part II: Coding results,” IEEE Trans. Commun. 43, 2595–2604 (1995). [CrossRef]
  22. J. Campello, “Practical bit loading for DMT,” in “Proc. Global Telecommun. Conf. (GLOBECOM ’99),” (Vancouver, Canada, 1999), pp. 801–805.
  23. S. Lee, F. Breyer, S. Randel, M. Schuster, J. Zeng, F. Huijskens, H. van den Boom, A. Koonen, N. Hanik, “24-Gb/s transmission over 730 m of multimode fiber by direct modulation of an 850-nm VCSEL using discrete multi-tone modulation,” “OFC/NFOEC,” (2007), p. PDP6.
  24. D. J. F. Barros, J. M. Kahn, “Comparison of orthogonal frequency-division multiplexing and on-off keying in amplified direct-detection single-mode fiber systems,” J. Lightw. Technol. 28, 1811–1820 (2010). [CrossRef]
  25. J. G. Proakis, M. Salehi, Digital Communications (McGraw-Hill, 2008), 5th ed.
  26. E. Vanin, “Performance evaluation of intensity modulated optical OFDM system with digital baseband distortion,” Opt. Express 19, 4280–4293 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited