OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 6996–7006

Operation of an optically coherent frequency comb outside the metrology lab

L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury  »View Author Affiliations

Optics Express, Vol. 22, Issue 6, pp. 6996-7006 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (5250 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a self-referenced fiber frequency comb that can operate outside the well-controlled optical laboratory. The frequency comb has residual optical linewidths of < 1 Hz, sub-radian residual optical phase noise, and residual pulse-to-pulse timing jitter of 2.4 - 5 fs, when locked to an optical reference. This fully phase-locked frequency comb has been successfully operated in a moving vehicle with 0.5 g peak accelerations and on a shaker table with a sustained 0.5 g rms integrated acceleration, while retaining its optical coherence and 5-fs-level timing jitter. This frequency comb should enable metrological measurements outside the laboratory with the precision and accuracy that are the hallmarks of comb-based systems.

© 2014 Optical Society of America

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(140.4050) Lasers and laser optics : Mode-locked lasers

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: January 2, 2014
Revised Manuscript: March 10, 2014
Manuscript Accepted: March 12, 2014
Published: March 18, 2014

L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, "Operation of an optically coherent frequency comb outside the metrology lab," Opt. Express 22, 6996-7006 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Hänsch, “Nobel Lecture: Passion for precision,” Rev. Mod. Phys. 78(4), 1297–1309 (2006). [CrossRef]
  2. J. L. Hall, “Nobel Lecture: Defining and measuring optical frequencies,” Rev. Mod. Phys. 78(4), 1279–1295 (2006). [CrossRef] [PubMed]
  3. S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27(11), B51–B62 (2010). [CrossRef]
  4. N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011). [CrossRef]
  5. A. Schliesser, M. Brehm, F. Keilmann, D. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13(22), 9029–9038 (2005). [CrossRef] [PubMed]
  6. I. Coddington, W. C. Swann, N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008). [CrossRef] [PubMed]
  7. M. Godbout, J.-D. Deschênes, J. Genest, “Spectrally resolved laser ranging with frequency combs,” Opt. Express 18(15), 15981–15989 (2010). [CrossRef] [PubMed]
  8. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010). [CrossRef]
  9. E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011). [CrossRef]
  10. A. M. Zolot, F. R. Giorgetta, E. Baumann, J. W. Nicholson, W. C. Swann, I. Coddington, N. R. Newbury, “Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43 THz,” Opt. Lett. 37(4), 638–640 (2012). [CrossRef] [PubMed]
  11. J. Roy, J.-D. Deschênes, S. Potvin, J. Genest, “Continuous real-time correction and averaging for frequency comb interferometry,” Opt. Express 20(20), 21932–21939 (2012). [CrossRef] [PubMed]
  12. A. M. Zolot, F. R. Giorgetta, E. Baumann, W. C. Swann, I. Coddington, N. R. Newbury, “Broad-band frequency references in the near-infrared: Accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spectrosc. Radiat. Transf. 118, 26–39 (2013). [CrossRef]
  13. S. Boudreau, S. Levasseur, C. Perilla, S. Roy, J. Genest, “Chemical detection with hyperspectral lidar using dual frequency combs,” Opt. Express 21(6), 7411–7418 (2013). [CrossRef] [PubMed]
  14. G. Rieker, F. R. Giorgetta, W. C. Swann, I. Coddington, L. C. Sinclair, C. L. Cromer, E. Baumann, A. Zolot, and N. R. Newbury, “Open-path dual-comb spectroscopy of greenhouse gases,” in CLEO:2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTh5C.9.
  15. Z. Zhang, T. Gardiner, D. T. Reid, “Mid-infrared dual-comb spectroscopy with an optical parametric oscillator,” Opt. Lett. 38(16), 3148–3150 (2013). [CrossRef] [PubMed]
  16. D. R. Leibrandt, M. J. Thorpe, J. C. Bergquist, T. Rosenband, “Field-test of a robust, portable, frequency-stable laser,” Opt. Express 19(11), 10278–10286 (2011). [CrossRef] [PubMed]
  17. D. R. Leibrandt, J. C. Bergquist, T. Rosenband, “Cavity-stabilized laser with acceleration sensitivity below 10−12 g−1,” Phys. Rev. A 87, 023829 (2013). [CrossRef]
  18. F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013). [CrossRef]
  19. C. W. Chou, D. B. Hume, T. Rosenband, D. J. Wineland, “Optical clocks and relativity,” Science 329(5999), 1630–1633 (2010). [CrossRef] [PubMed]
  20. D. Kleppner, “Time too good to be true,” Phys. Today 59(3), 10–11 (2006). [CrossRef]
  21. N. Schuhler, Y. Salvadé, S. Lévêque, R. Dändliker, R. Holzwarth, “Frequency-comb-referenced two-wavelength source for absolute distance measurement,” Opt. Lett. 31(21), 3101–3103 (2006). [CrossRef] [PubMed]
  22. I. Coddington, W. C. Swann, L. Nenadovic, N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009). [CrossRef]
  23. J. Lee, Y.-J. Kim, K. Lee, S. Lee, S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010). [CrossRef]
  24. M. U. Piracha, D. Nguyen, I. Ozdur, P. J. Delfyett, “Simultaneous ranging and velocimetry of fast moving targets using oppositely chirped pulses from a mode-locked laser,” Opt. Express 19(12), 11213–11219 (2011). [CrossRef] [PubMed]
  25. X. Wu, H. Wei, H. Zhang, L. Ren, Y. Li, J. Zhang, “Absolute distance measurement using frequency-sweeping heterodyne interferometer calibrated by an optical frequency comb,” Appl. Opt. 52(10), 2042–2048 (2013). [CrossRef] [PubMed]
  26. M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, H. P. Urbach, J. J. M. Braat, “High-accuracy long-distance measurements in air with a frequency comb laser,” Opt. Lett. 34(13), 1982–1984 (2009). [CrossRef] [PubMed]
  27. T.-A. Liu, N. R. Newbury, I. Coddington, “Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers,” Opt. Express 19(19), 18501–18509 (2011). [CrossRef] [PubMed]
  28. P. Balling, P. Kren, P. Masika, S. A. van den Berg, “Femtosecond frequency comb based distance measurement in air,” Opt. Express 17(11), 9300–9313 (2009). [CrossRef] [PubMed]
  29. E. Baumann, F. R. Giorgetta, I. Coddington, L. C. Sinclair, K. Knabe, W. C. Swann, N. R. Newbury, “Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements,” Opt. Lett. 38(12), 2026–2028 (2013). [CrossRef] [PubMed]
  30. K. Minoshima, H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39(30), 5512–5517 (2000). [CrossRef] [PubMed]
  31. F. Tauser, A. Leitenstorfer, W. Zinth, “Amplified femtosecond pulses from an Er:fiber system: Nonlinear pulse shortening and selfreferencing detection of the carrier-envelope phase evolution,” Opt. Express 11(6), 594–600 (2003). [CrossRef] [PubMed]
  32. B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, C. G. Jørgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29(3), 250–252 (2004). [CrossRef] [PubMed]
  33. T. R. Schibli, K. Minoshima, F. L. Hong, H. Inaba, A. Onae, H. Matsumoto, I. Hartl, M. E. Fermann, “Frequency metrology with a turnkey all-fiber system,” Opt. Lett. 29(21), 2467–2469 (2004). [CrossRef] [PubMed]
  34. P. Kubina, P. Adel, F. Adler, G. Grosche, T. Hänsch, R. Holzwarth, A. Leitenstorfer, B. Lipphardt, H. Schnatz, “Long term comparison of two fiber based frequency comb systems,” Opt. Express 13(3), 904–909 (2005). [CrossRef] [PubMed]
  35. N. R. Newbury, W. C. Swann, “Low-noise fiber-laser frequency combs (Invited),” J. Opt. Soc. Am. B 24(8), 1756–1770 (2007). [CrossRef]
  36. H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express 14(12), 5223–5231 (2006). [CrossRef] [PubMed]
  37. Y.-J. Kim, K. Lee, S. Han, Y.-S. Jang, H. Jang, and S.-W. Kim, “Development of Fiber Femtosecond Lasers for Advanced Metrological Space Missions,” in The 10th Conference on Lasers and Electro-Optics Pacific Rim (Optical Society of America, 2013). [CrossRef]
  38. T. Wilken, M. Lezius, T. W. Hansch, A. Kohfeldt, A. Wicht, V. Schkolnik, M. Krutzik, H. Duncker, O. Hellmig, P. Windpassinger, K. Sengstock, A. Peters, and R. Holzwarth, “A frequency comb and precision spectroscopy experiment in space,” in CLEO:2013 (Optical Society of America, 2013), paper AF2H.5.
  39. E. Baumann, F. R. Giorgetta, J. W. Nicholson, W. C. Swann, I. Coddington, N. R. Newbury, “High-performance, vibration-immune, fiber-laser frequency comb,” Opt. Lett. 34(5), 638–640 (2009). [CrossRef] [PubMed]
  40. W. C. Swann, J. J. McFerran, I. Coddington, N. R. Newbury, I. Hartl, M. E. Fermann, P. S. Westbrook, J. W. Nicholson, K. S. Feder, C. Langrock, M. M. Fejer, “Fiber-laser frequency combs with subhertz relative linewidths,” Opt. Lett. 31(20), 3046–3048 (2006). [CrossRef] [PubMed]
  41. I. Hartl, G. Imeshev, M. E. Fermann, C. Langrock, M. M. Fejer, “Integrated self-referenced frequency-comb laser based on a combination of fiber and waveguide technology,” Opt. Express 13(17), 6490–6496 (2005). [CrossRef] [PubMed]
  42. M. E. Fermann, I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15(1), 191–206 (2009). [CrossRef]
  43. H. Byun, M. Y. Sander, A. Motamedi, H. Shen, G. S. Petrich, L. A. Kolodziejski, E. P. Ippen, F. X. Kärtner, “Compact, stable 1 GHz femtosecond Er-doped fiber lasers,” Appl. Opt. 49(29), 5577–5582 (2010). [CrossRef] [PubMed]
  44. M. C. Stumpf, S. Pekarek, A. E. H. Oehler, T. Sudmeyer, J. M. Dudley, U. Keller, “Self-referencible frequency comb from a 170-fs, 1.5-μm solid-state laser oscillator,” Appl. Phys. B 99(3), 401–408 (2010). [CrossRef]
  45. C. Kim, K. Jung, K. Kieu, J. Kim, “Low timing jitter and intensity noise from a soliton Er-fiber laser mode-locked by a fiber taper carbon nanotube saturable absorber,” Opt. Express 20(28), 29524–29530 (2012). [CrossRef] [PubMed]
  46. M. Hirano, T. Nakanishi, T. Okuno, M. Onishi, “Silica-based highly nonlinear fibers and their application,” IEEE J. Sel. Top. Quantum Electron. 15(1), 103–113 (2009). [CrossRef]
  47. S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006). [CrossRef]
  48. R. Paschotta, “Timing jitter and phase noise of mode-locked fiber lasers,” Opt. Express 18(5), 5041–5054 (2010). [CrossRef] [PubMed]
  49. J. J. McFerran, W. C. Swann, B. R. Washburn, N. R. Newbury, “Elimination of pump-induced frequency jitter on fiber-laser frequency combs,” Opt. Lett. 31(13), 1997–1999 (2006). [CrossRef] [PubMed]
  50. T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, J. C. Bergquist, “Frequency Ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008). [CrossRef] [PubMed]
  51. F. Adler, M. J. Thorpe, K. C. Cossel, J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu Rev Anal Chem (Palo Alto Calif) 3(1), 175–205 (2010). [CrossRef] [PubMed]
  52. T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011). [CrossRef]
  53. E. E. Ungar, “Use of Vibration Isolation,” in Handbook of Noise and Vibration Control, M. J. Crocker, ed. (John Wiley and Sons, 2007), pp. 725 – 733.
  54. United States Department of Defense, MIL-STD-810G: Environmental Engineering Considerations and Laboratory Tests (2008).
  55. J. J. McFerran, W. C. Swann, B. R. Washburn, N. R. Newbury, “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian fceo phase excursions,” Appl. Phys. B 86(2), 219–227 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (3870 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited