OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 7014–7027

Intermittent operation of QC-lasers for mid-IR spectroscopy with low heat dissipation: tuning characteristics and driving electronics

M. Fischer, B. Tuzson, A. Hugi, R. Brönnimann, A. Kunz, S. Blaser, M. Rochat, O. Landry, A. Müller, and L. Emmenegger  »View Author Affiliations

Optics Express, Vol. 22, Issue 6, pp. 7014-7027 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1393 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Intermittent scanning for continuous-wave quantum cascade lasers is proposed along with a custom-built laser driver optimized for such operation. This approach lowers the overall heat dissipation of the laser by dropping its drive current to zero between individual scans and holding a longer pause between scans. This allows packaging cw-QCLs in TO–3 housings with built-in collimating optics, thus reducing cost and footprint of the device. The fully integrated, largely analog, yet flexible laser driver eliminates the need for any external electronics for current modulation, lowers the demands on power supply performance, and allows shaping of the tuning current in a wide range. Optimized ramp shape selection leads to large and nearly linear frequency tuning (> 1.5 cm−1). Experimental characterization of the proposed scheme with a QCL emitting at 7.7 μm gave a frequency stability of 3.2 × 10−5 cm−1 for the laser emission, while a temperature dependence of 2.3 × 10−4 cm−1/K was observed when the driver electronics was exposed to sudden temperature changes. We show that these characteristics make the driver suitable for high precision trace gas measurements by analyzing methane absorption lines in the respective spectral region.

© 2014 Optical Society of America

OCIS Codes
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6360) Spectroscopy : Spectroscopy, laser
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 10, 2014
Revised Manuscript: February 23, 2014
Manuscript Accepted: February 23, 2014
Published: March 18, 2014

M. Fischer, B. Tuzson, A. Hugi, R. Brönnimann, A. Kunz, S. Blaser, M. Rochat, O. Landry, A. Müller, and L. Emmenegger, "Intermittent operation of QC-lasers for mid-IR spectroscopy with low heat dissipation: tuning characteristics and driving electronics," Opt. Express 22, 7014-7027 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Tittel, Y. A. Bakhirkin, R. Curl, A. Kosterev, M. McCurdy, S. So, G. Wysocki, “Laser based chemical sensor technology: Recent advances and applications” in Advanced Environmental Monitoring, Y. Kim, U. Platt, eds. (SpringerNetherlands, 2008), pp. 50–63. [CrossRef]
  2. R. Curl, F. Capasso, C. Gmachl, A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, F. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010). [CrossRef]
  3. B. Tuzson, M. Mangold, H. Looser, A. Manninen, L. Emmenegger, “Compact multipass optical cell for laser spectroscopy,” Opt. Lett. 38, 257–259 (2013). [CrossRef] [PubMed]
  4. Y. Yao, A. J. Hoffman, C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photon. 6, 432–439 (2012). [CrossRef]
  5. M. Taubman, “Note: Switch-mode hybrid current controllers for quantum cascade lasers,” Rev. Sci. Instrum. 84, 016103 (2013). [CrossRef] [PubMed]
  6. S. Blaser, A. Bachle, S. Jochum, L. Hvozdara, G. Vandeputte, S. Brunner, S. Hansmann, A. Muller, J. Faist, “Low-consumption (below 2 W) continuous wave single mode quantum-cascade lasers grown by metal-organic vapour-phase epitaxy,” Electron. Lett. 43, 1201–1202 (2007). [CrossRef]
  7. Y. Bai, S. R. Darvish, N. Bandyopadhyay, S. Slivken, M. Razeghi, “Optimizing facet coating of quantum cascade lasers for low power consumption,” J. Appl. Phys. 109, 053103, (2011). [CrossRef]
  8. B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, J. Faist, “Single-mode quantum cascade lasers with power dissipation below 1 W,” Electron. Lett. 48, 646–647 (2012). [CrossRef]
  9. L. Tombez, F. Cappelli, S. Schilt, G. Di Domenico, S. Bartalini, D. Hofstetter, “Wavelength tuning and thermal dynamics of continuous-wave mid-infrared distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 103, 031111 (2013). [CrossRef]
  10. K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. Sivco, A. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23, 219–221 (1998). [CrossRef]
  11. E. Normand, M. McCulloch, G. Duxbury, N. Langford, “Fast, real-time spectrometer based on a pulsed quantum-cascade laser,” Opt. Lett. 28, 16–18 (2003). [CrossRef] [PubMed]
  12. D. Nelson, J. Shorter, J. McManus, M. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75, 343–350 (2002). [CrossRef]
  13. J. McManus, D. Nelson, S. Herndon, J. Shorter, M. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, J. Faist, “Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm−1,” Appl. Phys. B 85, 235–241 (2006). [CrossRef]
  14. M. McCulloch, E. Normand, N. Langford, G. Duxbury, D. Newnham, “Highly sensitive detection of trace gases using the time-resolved frequency downchirp from pulsed quantum-cascade lasers,” J. Opt. Soc. Am. B 20, 1761–1768 (2003). [CrossRef]
  15. A. Kosterev, R. Curl, F. Tittel, C. Gmachl, F. Capasso, D. Sivco, J. Baillargeon, A. Hutchinson, A. Cho, “Effective utilization of quantum-cascade distributed-feedback lasers in absorption spectroscopy,” Appl. Opt. 39, 4425–4430 (2000). [CrossRef]
  16. J. Faist, Quantum Cascade Lasers, (Oxford University, 2013). [CrossRef]
  17. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 562–658 (1980).
  18. P. Werle, R. Mücke, F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993). [CrossRef]
  19. L. Tombez, J. Di Francesco, S. Schilt, G. Di Domenico, J. Faist, P. Thomann, D. Hofstetter, “Frequency noise of free-running 4.6 μm distributed feedback quantum cascade lasers near room temperature,” Opt. Lett. 36, 3109–3111 (2011). [CrossRef] [PubMed]
  20. L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J.-P. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J.-M. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J.-Y. Mandin, S. Massie, S. Mikhailenko, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. M. Šimečková, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Ra. 110, 533–572 (2009). [CrossRef]
  21. P. Varghese, R. Hanson, “Collisional narrowing effects on spectral line shapes measured at high resolution,” Appl. Opt. 23, 2376–2385 (1984). [CrossRef] [PubMed]
  22. B. Tuzson, K. Zeyer, M. Steinbacher, J. B. McManus, D. D. Nelson, M. S. Zahniser, L. Emmenegger, “Selective measurements of NO, NO2 and NOy in the free troposphere using quantum cascade laser spectroscopy,” Atmos. Meas. Techn. 6, 927–936 (2013). [CrossRef]
  23. G. W. Santoni, B. H. Lee, J. P. Goodrich, R. K. Varner, P. M. Crill, J. B. McManus, D. D. Nelson, M. S. Zahniser, S. C. Wofsy, “Mass fluxes and isofluxes of methane (CH4) at a New Hampshire fen measured by a continuous wave quantum cascade laser spectrometer,” J. Geophys. Res. D 117D10301(2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited