OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 7075–7086

Gain-shift induced by dopant concentration ratio in a thulium-bismuth doped fiber amplifier

Siamak Dawazdah Emami, Atieh Zarifi, Hairul Azhar Abdul Rashid, Ahmad Razif Muhammad, Mukul Chandra Paul, Arindam Halder, Shyamal Kumar Bhadra, Harith Ahmad, and Sulaiman Wadi Harun  »View Author Affiliations

Optics Express, Vol. 22, Issue 6, pp. 7075-7086 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2094 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper details the effect of Thulium and Bismuth concentration ratio on gain-shift at 1800 nm and 1400 nm band in a Thulium-Bismuth Doped Fiber Amplifier (TBDFA). The effect of Thulium and Bismuth’s concentration ratio on gain shifting is experimentally established and subsequently numerically modeled. The analysis is carried out via the cross relaxation and energy transfer processes between the two dopants. The energy transfer in this process was studied through experimental and numerical analysis of three samples with different Tm/Bi concentration ratio of 2, 0.5 and 0.2, respectively. The optimized length for the three samples (TBDFA-1, TBDFA-2 and TBDFA-3) was determined and set at 6.5, 4 and 5.5 m, respectively. In addition, the experimental result of Thulium Doped Fiber Amplifier (TDFA) was compared with the earlier TBDFA samples. The gain for TBDFA-1, with the highest Tm/Bi ratio, showed no shift at the 1800 nm region, while TBDFA-2 and TBDFA-3, possessing a lower Tm/Bi concentration ratio, shifted to the region of 1950 and 1960 nm, respectively. The gain shifting from 1460 nm to 1490 nm is also observed. The numerical model demonstrates that the common 3F4 layer for 1460 nm emission (3H43F4), and 1800 nm emission (3F43H6) inversely affects the 1460 nm and 1800 nm gain shifting.

© 2014 Optical Society of America

OCIS Codes
(140.4480) Lasers and laser optics : Optical amplifiers
(160.5690) Materials : Rare-earth-doped materials

ToC Category:
Fiber Optics

Original Manuscript: September 19, 2013
Revised Manuscript: December 13, 2013
Manuscript Accepted: January 22, 2014
Published: March 19, 2014

Siamak Dawazdah Emami, Atieh Zarifi, Hairul Azhar Abdul Rashid, Ahmad Razif Muhammad, Mukul Chandra Paul, Arindam Halder, Shyamal Kumar Bhadra, Harith Ahmad, and Sulaiman Wadi Harun, "Gain-shift induced by dopant concentration ratio in a thulium-bismuth doped fiber amplifier," Opt. Express 22, 7075-7086 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Peterka, I. Kasik, A. Dhar, B. Dussardier, W. Blanc, “Theoretical modeling of fiber laser at 810 nm based on thulium-doped silica fibers with enhanced 3H4 level lifetime,” Opt. Express 19(3), 2773–2781 (2011). [CrossRef] [PubMed]
  2. T. Komukai, T. Yamamoto, T. Sugawa, Y. Miyajima, “Upconversion pumped thulium-doped fluoride fiber amplifier and laser operating at 1.47 mu m,” IEEE J. Quantum Electron. 31, 1880–1889 (1995). [CrossRef]
  3. C. A. Evans, Z. Ikonic, B. Richards, P. Harrison, A. Jha, “Theoretical modeling of a ~2 μm Tm3+-doped tellurite fiber laser: the influence of cross relaxation,” J. Lightwave Technol. 27(18), 4026–4032 (2009). [CrossRef]
  4. S. D. Emami, Thulium Doped Fiber Amplifier, Numerical and Experimental Approach (Nova Science, 2011).
  5. P. Peterka, B. Faure, W. Blanc, M. Karasek, B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fibre amplifiers,” Opt. Quantum Electron. 36(1–3), 201–212 (2004). [CrossRef]
  6. A. Pal, A. Dhar, S. Das, S. Y. Chen, T. Sun, R. Sen, K. T. Grattan, “Ytterbium-sensitized Thulium-doped fiber laser in the near-IR with 980 nm pumping,” Opt. Express 18(5), 5068–5074 (2010). [CrossRef] [PubMed]
  7. S. D. Emami, H. A. A. Rashid, S. Z. M. Yasin, K. A. M. Shariff, M. I. Zulkifli, Z. Yusoff, H. Ahmad, S. W. Harun, “New design of a thulium, aluminum-doped fiber amplifier based on macro-bending approach,” J. Lightwave Technol. 30(20), 3263–3272 (2012). [CrossRef]
  8. R. R. T. Xu, M. Wang, Y. L. L. Hu, J. J. Zhang, “Spectroscopic properties of 1.8 μm emission of thulium ions in germanate glass,” Appl. Phys., A Mater. Sci. Process. 102, 109–116 (2011).
  9. S. D. Jackson, T. A. King, “Theoretical modeling of Tm-doped silica fiber lasers,” J. Lightwave Technol. 17(5), 948–956 (1999). [CrossRef]
  10. H. Fatehi, S. D. Emami, A. Zarifi, F. Z. Zahedi, S. E. Mirnia, A. Zarei, H. Ahmad, S. W. Harun, “Analytical model for broadband thulium-bismuth-doped fiber amplifier,” IEEE J. Quantum Electron 48(8), 1052–1058 (2012). [CrossRef]
  11. B. Zhou, H. Lin, B. Chen, E. Y. Pun, “Superbroadband near-infrared emission in Tm-Bi codoped sodium-germanium-gallate glasses,” Opt. Express 19(7), 6514–6523 (2011). [CrossRef] [PubMed]
  12. G. P. Dong, X. D. Xiao, J. J. Ren, J. Ruan, X. F. Liu, J. R. Qiu, C. G. Lin, H. Z. Tao, X. J. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett. 25(5), 1891–1894 (2008). [CrossRef]
  13. N. Zhang, J. R. Qiu, G. P. Dong, Z. M. Yang, Q. Y. Zhang, M. Y. Peng, “Broadband tunable near-infrared emission of Bi-doped composite germanosilicate glasses,” J. Mater. Chem. 22(7), 3154–3159 (2012). [CrossRef]
  14. S. Zhou, H. Dong, H. Zeng, J. Hao, J. Chen, J. Qiu, “Infrared luminescence and amplification properties of Bi-doped GeO(2)-Ga(2)O(3)-Al(2)O(3) glasses,” J. Appl. Phys. 103(10), 103532 (2008). [CrossRef]
  15. J. Ren, G. Dong, S. Xu, R. Bao, J. Qiu, “Inhomogeneous broadening, luminescence origin and optical amplification in bismuth-doped glass,” J. Phys. Chem. A 112(14), 3036–3039 (2008). [CrossRef] [PubMed]
  16. S. Aozasa, H. Masuda, M. Shimizu, “S-band thulium-doped fiber amplifier employing high thulium concentration doping technique,” J. Lightwave Technol. 24(10), 3842–3848 (2006). [CrossRef]
  17. T. Kasamatsu, Y. Yano, T. Ono, “1.49-μm-band gain-shifted thulium-doped fiber amplifier for WDM transmission systems,” J. Lightwave Technol. 20(10), 1826–1838 (2002). [CrossRef]
  18. T. Kasamatsu, Y. Yano, H. Sekita, “1.50-mum-band gain-shifted thulium-doped fiber amplifier with 1.05- and 1.56-mum dual-wavelength pumping,” Opt. Lett. 24(23), 1684–1686 (1999). [CrossRef] [PubMed]
  19. B. Zhou, H. Lin, B. Chen, E. Y. B. Pun, “Superbroadband near-infrared emission in Tm-Bi codoped sodium-germanium-gallate glasses,” Opt. Express 19(7), 6514–6523 (2011). [CrossRef] [PubMed]
  20. M. Weber, T. Varitimos, B. Matsinger, “Optical intensities of rare-earth ions in yttrium orthoaluminate,” Phys. Rev. B 8(1), 47–53 (1973). [CrossRef]
  21. J. Yang, S. Dai, Y. Zhou, L. Wen, L. Hu, Z. Jiang, “Spectroscopic properties and thermal stability of erbium-doped bismuth-based glass for optical amplifier,” Appl. Phys. B 93(2), 977–983 (2003). [CrossRef]
  22. R. Balda, L. M. Lacha, J. Fernández, M. A. Arriandiaga, J. M. Fernández-Navarro, D. Muñoz-Martin, “Spectroscopic properties of the 1.4 μm emission of Tm3+ ions in TeO2-WO3-PbO glasses,” Opt. Express 16(16), 11836–11846 (2008). [CrossRef] [PubMed]
  23. T. M. Hau, R. F. Wang, D. C. Zhou, X. Yu, Z. G. Song, Z. W. Yang, Y. Yang, X. J. He, J. B. Qiu, “Infrared broadband emission of bismuth-thulium co-doped lanthanum-aluminum-silica glasses,” J. Lumin. 132(6), 1353–1356 (2012). [CrossRef]
  24. E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley-Interscience, 1995).
  25. E. Yahel, A. A. Hardy, “Modeling and optimization of short Er3+-Yb3+ codoped fiber lasers,” IEEE J. Quantum Electron. 39(11), 1444–1451 (2003). [CrossRef]
  26. F. Di Pasquale, M. Federighi, “Modelling of uniform and pair-induced upconversion mechanisms in high-concentration erbium-doped silica waveguides,” J. Lightwave Technol. 13(9), 1858–1864 (1995). [CrossRef]
  27. A. Zarifi, S. D. Emami, F. Z. Zahedi, H. Fatehi, S. E. Mirnia, H. Ahmad, S. W. Harun, “Quantitative analysis of energy transfer processes in Thulium–Bismuth germanate co-doped fiber amplifier,” Opt. Mater. 35(2), 231–239 (2012). [CrossRef]
  28. A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorgé, A. M. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61(8), 5280–5292 (2000). [CrossRef]
  29. J. Ruan, G. Dong, X. Liu, Q. Zhang, D. Chen, J. Qiu, “Enhanced broadband near-infrared emission and energy transfer in Bi-Tm-codoped germanate glasses for broadband optical amplification,” Opt. Lett. 34(16), 2486–2488 (2009). [CrossRef] [PubMed]
  30. H. Tang, H. P. Xia, Y. P. Zhang, H. Y. Hu, H. C. Jiang, “Spectral properties of and energy transfer in Bi/Tm co-doped silicate glasses,” J. Opt. 14, 125402 (2012).
  31. J. Ganem, J. Crawford, P. Schmidt, N. Jenkins, S. Bowman, “Thulium cross-relaxation in a low phonon energy crystalline host,” Phys. Rev. B 66(24), 245101 (2002). [CrossRef]
  32. A. S. Simpson, “Spectroscopy of thulium doped silica glass,” Victoria University (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited