OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 7087–7098

When can temporally focused excitation be axially shifted by dispersion?

B. Leshem, O. Hernandez, E. Papagiakoumou, V. Emiliani, and D. Oron  »View Author Affiliations

Optics Express, Vol. 22, Issue 6, pp. 7087-7098 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1691 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Temporal focusing (TF) allows for axially confined wide-field multi-photon excitation at the temporal focal plane. For temporally focused Gaussian beams, it was shown both theoretically and experimentally that the temporal focus plane can be shifted by applying a quadratic spectral phase to the incident beam. However, the case for more complex wave-fronts is quite different. Here we study the temporal focus plane shift (TFS) for a broader class of excitation profiles, with particular emphasis on the case of temporally focused computer generated holography (CGH) which allows for generation of arbitrary, yet speckled, 2D patterns. We present an analytical, numerical and experimental study of this phenomenon. The TFS is found to depend mainly on the autocorrelation of the CGH pattern in the direction of the beam dispersion after the grating in the TF setup. This provides a pathway for 3D control of multi-photon excitation patterns.

© 2014 Optical Society of America

OCIS Codes
(170.6900) Medical optics and biotechnology : Three-dimensional microscopy
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(090.1995) Holography : Digital holography

ToC Category:

Original Manuscript: December 3, 2013
Revised Manuscript: February 6, 2014
Manuscript Accepted: February 11, 2014
Published: March 19, 2014

Virtual Issues
Vol. 9, Iss. 5 Virtual Journal for Biomedical Optics

B. Leshem, O. Hernandez, E. Papagiakoumou, V. Emiliani, and D. Oron, "When can temporally focused excitation be axially shifted by dispersion?," Opt. Express 22, 7087-7098 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Oron, E. Tal, Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express 13, 1468–1476 (2005). [CrossRef] [PubMed]
  2. G. Zhu, J. van Howe, M. E. Durst, W. Zipfel, C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express 13, 2153–2159 (2005). [CrossRef] [PubMed]
  3. E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7, 848–854 (2010). [CrossRef] [PubMed]
  4. A. Vaziri, J. Tang, H. Shroff, C. V. Shank, “Multilayer three-dimensional super resolution imaging of thick biological samples,” Proc. Natl Acad. Sci. U. S. A. 105, 20221–20226 (2008). [CrossRef] [PubMed]
  5. E. Y. S. Yew, H. Choi, D. Kim, P. T. C. So, “Wide-field two-photon microscopy with temporal focusing and hilo background rejection,” in “SPIE BiOS” (International Society for Optics and Photonics, 2011), p. 79031O.
  6. E. Papagiakoumou, A. Bègue, B. Leshem, O. Schwartz, B. M. Stell, J. Bradley, D. Oron, V. Emiliani, “Functional patterned multiphoton excitation deep inside scattering tissue,” Nat. Photonics 7, 274–278 (2013). [CrossRef]
  7. E. Block, M. Greco, D. Vitek, O. Masihzadeh, D. A. Ammar, M. Y. Kahook, N. Mandava, C. Durfee, J. Squier, “Simultaneous spatial and temporal focusing for tissue ablation,” Bio. Opt. Express 4, 831–841 (2013). [CrossRef]
  8. H. Suchowski, D. Oron, Y. Silberberg, “Generation of a dark nonlinear focus by spatio-temporal coherent control,” Opt. Commun. 264, 482–487 (2006). [CrossRef]
  9. M. E. Durst, G. Zhu, C. Xu, “Simultaneous spatial and temporal focusing for axial scanning,” Opt. Express 14, 12243–12254 (2006). [CrossRef] [PubMed]
  10. M. E. Durst, G. Zhu, C. Xu, “Simultaneous spatial and temporal focusing in nonlinear microscopy,” Opt. Commun. 281, 1796–1805 (2008). [CrossRef] [PubMed]
  11. O. Martinez, “3000 times grating compressor with positive group velocity dispersion: Application to fiber compensation in 1.3–1.6 μm region,” IEEE J. Quantum Electron. 23, 59–64 (1987). [CrossRef]
  12. R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  13. M. Reicherter, T. Haist, E. U. Wagemann, H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24, 608–610 (1999). [CrossRef]
  14. C. Lutz, T. S. Otis, V. de Sars, S. Charpak, D. A. DiGregorio, V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods 5, 821–827 (2008). [CrossRef]
  15. P. Wang, R. Menon, “Three-dimensional lithography via digital holography,” in “Frontiers in Optics” (Optical Society of America, 2012).
  16. J. E. Curtis, B. A. Koss, D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002). [CrossRef]
  17. I. Reutsky-Gefen, L. Golan, N. Farah, A. Schejter, L. Tsur, I. Brosh, S. Shoham, “Holographic optogenetic stimulation of patterned neuronal activity for vision restoration,” Nat. Commun. 4, 1509 (2013). [CrossRef] [PubMed]
  18. S. Yang, E. Papagiakoumou, M. Guillon, V. de Sars, C.-M. Tang, V. Emiliani, “Three-dimensional holographic photostimulation of the dendritic arbor,” J. Neur. Eng. 8, 046002 (2011). [CrossRef]
  19. F. Anselmi, C. Ventalon, A. Bègue, D. Ogden, V. Emiliani, “Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning,” Proc. Natl. Acad. Sci. U. S. A. 108, 19504–19509 (2011). [CrossRef] [PubMed]
  20. E. Papagiakoumou, V. de Sars, D. Oron, V. Emiliani, “Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses,” Opt. Express 16, 22039–22047 (2008). [CrossRef] [PubMed]
  21. A. Bègue, E. Papagiakoumou, B. Leshem, R. Conti, L. Enke, D. Oron, V. Emiliani, “Multiphoton excitation in scattering media by holographic beams and their application in optogenetic stimulation,” Biomed. Opt. Express (to be published) (2013). [CrossRef]
  22. H. Dana, S. Shoham, “Remotely scanned multiphoton temporal focusing by axial grism scanning,” Opt. Lett. 37, 2913–2915 (2012). [CrossRef] [PubMed]
  23. D. Oron, E. Papagiakoumou, F. Anselmi, V. Emiliani, “Two-photon optogenetics,” Prog. Brain Res. 196, 119–143 (2012). [CrossRef] [PubMed]
  24. E. Yew, C. J. R. Sheppard, P. T. C. So, “Temporally focused wide-field two-photon microscopy: Paraxial to vectorial,” Opt. Express 21, 12951–12963 (2013). [CrossRef] [PubMed]
  25. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company Publishers, 2007).
  26. J. W. Goodman, Introduction to Fourier Optics (Roberts and Company, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited