OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 7124–7132

Generation of nonparaxial accelerating fields through mirrors. I: Two dimensions

Miguel A. Alonso and Miguel A. Bandres  »View Author Affiliations

Optics Express, Vol. 22, Issue 6, pp. 7124-7132 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1356 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Accelerating beams are wave packets that preserve their shape while propagating along curved trajectories. Recent constructions of nonparaxial accelerating beams cannot span more than a semicircle. Here, we present a ray based analysis for nonparaxial accelerating fields and pulses in two dimensions. We also develop a simple geometric procedure for finding mirror shapes that convert collimated fields or fields emanating from a point source into accelerating fields tracing circular caustics that extend well beyond a semicircle.

© 2014 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(350.5500) Other areas of optics : Propagation
(070.3185) Fourier optics and signal processing : Invariant optical fields
(080.4035) Geometric optics : Mirror system design
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
Physical Optics

Original Manuscript: January 22, 2014
Revised Manuscript: March 12, 2014
Manuscript Accepted: March 12, 2014
Published: March 19, 2014

Miguel A. Alonso and Miguel A. Bandres, "Generation of nonparaxial accelerating fields through mirrors. I: Two dimensions," Opt. Express 22, 7124-7132 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Bandres, I. Kaminer, M. Mills, B. M. Rodríguez-Lara, E. Greenfield, M. Segev, D. N. Christodoulides, “Accelerating optical beams,” Opt. Photon. News 24, 30–37 (2013). [CrossRef]
  2. G. A. Siviloglou, D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32, 979–981 (2007). [CrossRef] [PubMed]
  3. M. A. Bandres, “Accelerating beams,” Opt. Lett. 34, 3791–3793 (2009). [CrossRef] [PubMed]
  4. M. V. Berry, N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47, 264–267 (1979). [CrossRef]
  5. I. Kaminer, R. Bekenstein, J. Nemirovsky, M. Segev, “Nondiffracting accelerating wave packets of Maxwells equations,” Phys. Rev. Lett. 108, 163901 (2012). [CrossRef]
  6. F. Courvoisier, A. Mathis, L. Froehly, R. Giust, L. Furfaro, P. A. Lacourt, M. Jacquot, J. M. Dudley, “Sending femtosecond pulses in circles: highly nonparaxial accelerating beams,” Opt. Lett. 37, 1736–1738 (2012). [CrossRef] [PubMed]
  7. P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, X. Zhang, “Nonparaxial Mathieu and Weber accelerating beams,” Phys. Rev. Lett. 109, 193901 (2012). [CrossRef] [PubMed]
  8. M. A. Bandres, B. M. Rodríguez-Lara, “Nondiffracting accelerating waves: Weber waves and parabolic momentum,” New J. Phys. 15, 013054 (2013). [CrossRef]
  9. P. Aleahmad, M.A. Miri, M. S. Mills, I. Kaminer, M. Segev, D. N. Christodoulides, “Fully vectorial accelerating diffraction-free Helmholtz beams,” Phys. Rev. Lett. 109, 203902 (2012). [CrossRef] [PubMed]
  10. M. A. Alonso, M. A. Bandres, “Spherical fields as nonparaxial accelerating waves,” Opt. Lett. 37, 5175–5177 (2012). [CrossRef] [PubMed]
  11. A. Mathis, F. Courvoisier, R. Giust, L. Furfaro, M. Jacquot, L. Froehly, J. M. Dudley, “Arbitrary nonparaxial accelerating periodic beams and spherical shaping of light,” Opt. Lett. 38, 2218–2220 (2013). [CrossRef] [PubMed]
  12. M. A. Bandres, M. A. Alonso, I. Kaminer, M. Segev, “Three-dimensional accelerating electromagnetic waves,” Opt. Express 21, 13917–13929 (2013). [CrossRef] [PubMed]
  13. Y. Kaganovsky, E. Heyman, “Wave analysis of Airy beams,” Opt. Express 18, 8440–8452 (2010). [CrossRef] [PubMed]
  14. L. Froehly, F. Courvoisier, A. Mathis, M. Jacquot, L. Furfaro, R. Giust, P. A. Lacourt, J. M. Dudley, “Arbitrary accelerating micron-scale caustic beams in two and three dimensions,” Opt. Express 19, 16455–16465 (2011). [CrossRef] [PubMed]
  15. S. Vo, K. Fuerschbach, K. Thompson, M. A. Alonso, J. Rolland, “Airy beams: a geometric optics perspective,” J. Opt. Soc. Am. A 27, 2574–2582 (2010). [CrossRef]
  16. Y. Kaganovsky, E. Heyman, “Nonparaxial wave analysis of three-dimensional Airy beams,” J. Opt. Soc. Am. A 29, 671–688 (2012). [CrossRef]
  17. M. A. Alonso, M. A. Bandres, “Generation of nonparaxial accelerating fields through mirrors. II: Three dimensions,”, submitted.
  18. Yu. A. Kravtsov, Yu. A. Orlov, Caustics, Catastrophes and Wave Fields, 2 (Springer, 1999), p. 21.
  19. M. A. Bandres, M. Guizar-Sicairos, “Paraxial group,” Opt. Lett. 34, 13–15 (2009). [CrossRef]
  20. M. P. Do Carmo, Differential Geometry of Curves and Surfaces, (Prentice Hall, 1976), pp. 16–22.
  21. R. Winston, J. C. Miñano, P. Benítez, Nonimaging Optics (Elsevier, 2005), pp. 47–49.
  22. M. Born, E. Wolf, Principles of Optics, 7 (Cambridge University Press, 1999), pp. 484–498.
  23. M. V. Berry, “Uniform approximation: a new concept in wave theory,” Sci. Prog., Oxf. 57, 43–64 (1969).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (951 KB)     
» Media 2: MOV (316 KB)     
» Media 3: MOV (519 KB)     
» Media 4: MOV (5240 KB)     
» Media 5: MOV (679 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited