OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 7172–7177

Long distance active hyperspectral sensing using high-power near-infrared supercontinuum light source

Albert Manninen, Teemu Kääriäinen, Tomi Parviainen, Scott Buchter, Miika Heiliö, and Toni Laurila  »View Author Affiliations

Optics Express, Vol. 22, Issue 6, pp. 7172-7177 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1384 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A hyperspectral remote sensing instrument employing a novel near-infrared supercontinuum light source has been developed for active illumination and identification of targets. The supercontinuum is generated in a standard normal dispersion multi-mode fiber and has 16 W total optical output power covering 1000 nm to 2300 nm spectral range. A commercial 256-channel infrared spectrometer was used for broadband infrared detection. The feasibility of the presented hyperspectral measurement approach was investigated both indoors and in the field. Reflection spectra from several diffusive targets were successfully measured and a measurement range of 1.5 km was demonstrated.

© 2014 Optical Society of America

OCIS Codes
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(280.3420) Remote sensing and sensors : Laser sensors
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:

Original Manuscript: January 20, 2014
Revised Manuscript: March 7, 2014
Manuscript Accepted: March 7, 2014
Published: March 19, 2014

Albert Manninen, Teemu Kääriäinen, Tomi Parviainen, Scott Buchter, Miika Heiliö, and Toni Laurila, "Long distance active hyperspectral sensing using high-power near-infrared supercontinuum light source," Opt. Express 22, 7172-7177 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. L. Nischan, R. M. Joseph, J. C. Libby, J. P. Kerekes, “Active spectral imaging,” Lincoln Lab. J. 14(1), 131–144 (2003).
  2. F. D. van der Meer, H. M. van der Werff, F. J. van Ruitenbeek, C. A. Hecker, W. H. Bakker, M. F. Noomen, M. van der Meijde, E. J. M. Carranza, J. B. D. Smeth, T. Woldai, “Multi- and hyperspectral geologic remote sensing: A review,” Int. J. Appl. Earth Obs. 14, 112–128 (2012).
  3. D. M. Brown, Z. Liu, C. R. Philbrick, “Supercontinuum lidar applications for measurements of atmospheric constituents,” Proc. SPIE 6950, 69500B (2008). [CrossRef]
  4. R. A. Lamb, “A review of ultra-short pulse lasers for military remote sensing and rangefinding,” Proc. SPIE 7483, 748308 (2009). [CrossRef]
  5. T. Hakala, J. Suomalainen, S. Kaasalainen, Y. Chen, “Full waveform hyperspectral LiDAR for terrestrial laser scanning,” Opt. Express 20(7), 7119–7127 (2012). [CrossRef] [PubMed]
  6. D. A. Orchard, A. J. Turner, L. Michaille, K. R. Ridley, “White light lasers for remote sensing,” Proc. SPIE 7115, 711506 (2008). [CrossRef]
  7. J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).
  8. C. Kaminski, R. Watt, A. Elder, J. Frank, J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92(3), 367–378 (2008). [CrossRef]
  9. J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]
  10. H. Hasegawa, “Evaluations of LIDAR reflectance amplitude sensitivity towards land cover conditions,” Bull. Geogr. Surv. Inst. 53, 43–50 (2006).
  11. S. C. Buchter, “Broadband high power light source,” Patent Application Publication US2012/0099340 A1 (2012), http://patentscope.wipo.int/search/en/WO2010115432 .
  12. S. H. Baek, W. B. Roh, “Single-mode Raman fiber laser based on a multimode fiber,” Opt. Lett. 29(2), 153–155 (2004). [CrossRef] [PubMed]
  13. A. Polley, S. E. Ralph, “Raman amplification in multimode fiber,” IEEE Photonics Technol. Lett. 19(4), 218–220 (2007).
  14. L. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. LeRoy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited