OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 7178–7185

Compact and stable THz vector spectroscopy using silicon photonics technology

Jae-Young Kim, Hidetaka Nishi, Ho-Jin Song, Hiroshi Fukuda, Makoto Yaita, Akihiko Hirata, and Katsuhiro Ajito  »View Author Affiliations

Optics Express, Vol. 22, Issue 6, pp. 7178-7185 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1312 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a compact and stable terahertz (THz) vector spectroscopy system using silicon photonics technology. A silicon-based integrated phase control circuit greatly reduces the physical size of the continuous-wave THz spectroscopy system and enhances environmental phase stability. Differential lightwave phase control using two carrier-injection electro-optic modulators enables fast and linear phase sweeps of THz-waves. Using the silicon-photonic circuit, we demonstrate a THz vector spectrometer; the dynamic ranges are 65 and 35 dB at 300 GHz and 1 THz with 1-ms integration time and phase variation is less than ± 10° without thermal packaging.

© 2014 Optical Society of America

OCIS Codes
(300.6495) Spectroscopy : Spectroscopy, teraherz
(130.4110) Integrated optics : Modulators

ToC Category:
Terahertz Optics

Original Manuscript: January 27, 2014
Revised Manuscript: March 12, 2014
Manuscript Accepted: March 13, 2014
Published: March 19, 2014

Jae-Young Kim, Hidetaka Nishi, Ho-Jin Song, Hiroshi Fukuda, Makoto Yaita, Akihiko Hirata, and Katsuhiro Ajito, "Compact and stable THz vector spectroscopy using silicon photonics technology," Opt. Express 22, 7178-7185 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007). [CrossRef]
  2. D. M. Charron, K. Ajito, J.-Y. Kim, Y. Ueno, “Chemical mapping of pharmaceutical cocrystals using terahertz spectroscopic imaging,” Anal. Chem. 85(4), 1980–1984 (2013). [CrossRef] [PubMed]
  3. K. Kawase, Y. Ogawa, Y. Watanabe, H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003). [CrossRef] [PubMed]
  4. F. Friederich, W. V. Spiegel, M. Bauer, F. Meng, M. D. Thomson, S. Boppel, A. Lisauskas, B. Hils, V. Krozer, A. Keil, T. Löffler, R. Henneberger, A. K. Huhn, G. Spickermann, P. H. Bolívar, H. G. Roskos, “THz Active Imaging Systems With Real-Time Capabilities,” IEEE Trans. THz Sci. Tech. (Paris) 1, 183–200 (2011).
  5. R. T. Logan, Jr., J. R. Demers, and B. L. Kasper, “Field-Portable THz Spectrometer for Characterization of Explosives and Chemicals,” in proceeding of 36th Int.Conf. on Infrared, Millimeter and Terahertz Waves (Houston, Texas, 2011), pp. 1–3. [CrossRef]
  6. A. M. Sinyukov, Z. Liu, Y. L. Hor, K. Su, R. B. Barat, D. E. Gary, Z.-H. Michalopoulou, I. Zorych, J. F. Federici, D. Zimdars, “Rapid-phase modulation of terahertz radiation for high-speed terahertz imaging and spectroscopy,” Opt. Lett. 33(14), 1593–1595 (2008). [CrossRef] [PubMed]
  7. N. Kim, S.-P. Han, H. Ko, Y. A. Leem, H.-C. Ryu, C. W. Lee, D. Lee, M. Y. Jeon, S. K. Noh, K. H. Park, “Tunable continuous-wave terahertz generation/detection with compact 1.55 μm detuned dual-mode laser diode and InGaAs based photomixer,” Opt. Express 19(16), 15397–15403 (2011). [CrossRef] [PubMed]
  8. T. Göbel, D. Stanze, U. Troppenz, J. Kreissl, B. Sartorius, and M. Schell, “Integrated Continuous-Wave THz Control Unit with 1 THz Tuning Range,” in proceeding of 37th Int.Conf. on Infrared, Millimeter and Terahertz Waves (Wollongong, Australia, 2012), pp. 1–3. [CrossRef]
  9. S. Hisatake, G. Kitahara, K. Ajito, Y. Fukada, N. Yoshimoto, T. Nagatsuma, “Phase-sensitive terahertz self-heterodyne system based on photodiode and low-temperature-grown GaAs photoconductor at 1.55 μm,” IEEE Sens. J. 13(1), 31–36 (2013). [CrossRef]
  10. J. -Y. Kim, H. -J. Song, K. Ajito, M. Yaita, N. Kukutsu, “Continuous-Wave THz Homodyne Spectroscopy and Imaging System With Electro-Optical Phase Modulation for High Dynamic Range,” IEEE Trans. THz, Sci. Tech. (Paris) 3, 158–164 (2013).
  11. T. Göbel, D. Stanze, B. Globisch, R. J. B. Dietz, H. Roehle, M. Schell, “Telecom technology based continuous wave terahertz photomixing system with 105 decibel signal-to-noise ratio and 3.5 terahertz bandwidth,” Opt. Lett. 38(20), 4197–4199 (2013). [CrossRef] [PubMed]
  12. J.-Y. Kim, H.-J. Song, M. Yaita, A. Hirata, K. Ajito, “CW-THz vector spectroscopy and imaging system based on 1.55-µm fiber-optics,” Opt. Express 22(2), 1735–1741 (2014). [CrossRef] [PubMed]
  13. S. J. B. Yoo, “Future prospects of silicon photonics in next generation communication and computing systems,” Electron. Lett. 45(12), 584–588 (2009). [CrossRef]
  14. Y. A. Vlasov, “Silicon CMOS-Integrated Nano-Photonics for Computer and Data Communications Beyond 100G,” IEEE Commun. Mag. 50(2), s67–s72 (2012). [CrossRef]
  15. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007). [CrossRef] [PubMed]
  16. H. Nishi, T. Tsuchizawa, R. Kou, H. Shinojima, T. Yamada, H. Kimura, Y. Ishikawa, K. Wada, K. Yamada, “Monolithic integration of a silica AWG and Ge photodiodes on Si photonic platform for one-chip WDM receiver,” Opt. Express 20(8), 9312–9321 (2012). [CrossRef] [PubMed]
  17. T. Hiraki, H. Nishi, T. Tsuchizawa, R. Kou, H. Fukuda, K. Takeda, Y. Ishikawa, K. Wada, K. Yamada, “Si-Ge-Silica Monolithic Integration Platform and Its Application to a 22-Gb/s x 16-ch WDM Receiver,” IEEE Photonics J. 5(4), 4500407 (2013). [CrossRef]
  18. H. Ito, T. Furuta, F. Nakajima, K. Yoshino, T. Ishibashi, “Photonic Generation of Continuous THz Wave Using Uni-Traveling-Carrier Photodiode,” J. Lightwave Technol. 23(12), 4016–4021 (2005). [CrossRef]
  19. T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, S. Itabashi, “Monolithic Integration of Silicon-, Germanium-, and Silica-Based Optical Devices for Telecommunications Applications,” IEEE J. Sel. Top. Quantum Electron. 17(3), 516–525 (2011). [CrossRef]
  20. H. Nishi, T. Tsuchizawa, T. Watanabe, H. Shinojima, K. Yamada, S. Itabashi, “Compact and Polarization-Independent Variable Optical Attenuator Based on a Silicon Wire Waveguide with a Carrier Injection Structure,” Jpn. J. Appl. Phys. 49(4), 04DG20 (2010). [CrossRef]
  21. C. E. Png, S. P. Chan, S. T. Lim, G. T. Reed, “Optical Phase Modulators for MHz and GHz Modulation in Silicon-On-Insulator (SOI),” J. Lightwave Technol. 22(6), 1573–1582 (2004). [CrossRef]
  22. D. Korn, R. Palmer, H. Yu, P. C. Schindler, L. Alloatti, M. Baier, R. Schmogrow, W. Bogaerts, S. K. Selvaraja, G. Lepage, M. Pantouvaki, J. M. D. Wouters, P. Verheyen, J. Van Campenhout, B. Chen, R. Baets, P. Absil, R. Dinu, C. Koos, W. Freude, J. Leuthold, “Silicon-organic hybrid (SOH) IQ modulator using the linear electro-optic effect for transmitting 16QAM at 112 Gbit/s,” Opt. Express 21(11), 13219–13227 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited