OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 7194–7209

Simulation study on light propagation in an isotropic turbulence field of the mixed layer

Renmin Yuan, Jianning Sun, Tao Luo, Xuping Wu, Chen Wang, and Chao Lu  »View Author Affiliations

Optics Express, Vol. 22, Issue 6, pp. 7194-7209 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1835 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Water tank experiments and numerical simulations are employed to investigate the characteristics of light propagation in the convective boundary layer (CBL). The CBL, namely the mixed layer (ML), was simulated in the water tank. A laser beam was set to horizontally go through the water tank, and the image of two-dimensional (2D) light intensity fluctuation formed on the receiving plate perpendicular to the light path was recorded by CCD. The spatial spectra of both horizontal and vertical light intensity fluctuations were analyzed, and the vertical distribution profile of the scintillation index (SI) in the ML was obtained. The experimental results indicate that 2D light intensity fluctuation was isotropically distributed in the cross section perpendicular to the light beam in the ML. Based on the measured temperature fluctuations along the light path at different heights, together with the relationship between temperature and refractive index, the refractive index fluctuation spectra and the corresponding turbulence parameters were derived. The obtained parameters were applied in a numerical model to simulate light propagation in the isotropic turbulence field. The calculated results successfully reproduce the characteristics of light intensity fluctuation observed in the experiments.

© 2014 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: February 6, 2014
Revised Manuscript: March 2, 2014
Manuscript Accepted: March 10, 2014
Published: March 19, 2014

Renmin Yuan, Jianning Sun, Tao Luo, Xuping Wu, Chen Wang, and Chao Lu, "Simulation study on light propagation in an isotropic turbulence field of the mixed layer," Opt. Express 22, 7194-7209 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. I. Tatarskii, Wave Propagation in a Turbulent Medium (McGraw-Hill, 1961).
  2. R. J. Hill, “Models of the scalar spectrum for turbulent advection,” J. Fluid Mech. 88(03), 541–562 (1978). [CrossRef]
  3. L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media (SPIE, 2005).
  4. J. L. Codona, D. B. Creamer, S. M. Flatte, R. G. Frehlich, F. S. Henyey, “Solution for the fourth moment of waves propagating in random media,” Radio Sci. 21(6), 929–948 (1986). [CrossRef]
  5. L. Y. Cui, B. D. Xue, X. G. Cao, J. K. Dong, J. N. Wang, “Generalized atmospheric turbulence MTF for wave propagating through non-Kolmogorov turbulence,” Opt. Express 18(20), 21269–21283 (2010). [CrossRef] [PubMed]
  6. R. Z. Rao, S. P. Wang, X. C. Liu, Z. B. Gong, “Turbulence spectrum effect on wave temporal-frequency spectra for light propagating through the atmosphere,” J. Opt. Soc. Am. A 16(11), 2755–2762 (1999). [CrossRef]
  7. R. B. Stull, An Introduction to Boundary Layer Meteorology (Kluwer Academic, 1988).
  8. M. Kelly, J. C. Wyngaard, “Two-dimensional spectra in the atmospheric boundary layer,” J. Atmos. Sci. 63(11), 3066–3070 (2006). [CrossRef]
  9. R. J. Hill, “Review of optical scintillation methods of measuring the refractive-index spectrum, inner scale and surface fluxes,” Waves Random Media 2(3), 179–201 (1992). [CrossRef]
  10. D. Peng, Y. Xiuhua, Z. Yanan, Z. Ming, L. Hanjun, “Influence of wind speed on free space optical communication performance for Gaussian beam propagation through non Kolmogorov strong turbulence,” J. Phys. Conf. Ser. 276, 012056 (2011).
  11. F. Beyrich, J. Bange, O. K. Hartogensis, S. Raasch, M. Braam, D. van Dinther, D. Graef, B. van Kesteren, A. C. van den Kroonenberg, B. Maronga, S. Martin, A. F. Moene, “Towards a validation of scintillometer measurements: the LITFASS-2009 Experiment,” Boundary Layer Meteorol. 144, 83–112 (2012).
  12. J. W. Deardorff, G. E. Willis, B. H. Stockton, “Laboratory studies of the entrainment zone of a convectively mixed layer,” J. Fluid Mech. 100(01), 41–64 (1980). [CrossRef]
  13. M. F. Hibberd, B. L. Sawford, “Design criteria for water tank models of dispersion in the planetary convective boundary-layer,” Boundary Layer Meteorol. 67, 97–118 (1994).
  14. R. Yuan, X. Wu, T. Luo, H. Liu, J. Sun, “A review of water tank modeling of the convective atmospheric boundary layer,” J. Wind Eng. Ind. Aerodyn. 99(10), 1099–1114 (2011). [CrossRef]
  15. A. S. Gurvich, M. A. Kallistratova, F. E. Martvel, “An investigation of strong fluctuations of light intensity in a turbulent medium at a small wave parameter,” Radiophys. Quantum Electron. 20(7), 705–714 (1977). [CrossRef]
  16. V. A. Kulikov, M. S. Andreeva, A. V. e. Koryabin, V. I. Shmalhausen, “Method of estimation of turbulence characteristic scales,” Appl. Opt. 51(36), 8505–8515 (2012). [CrossRef] [PubMed]
  17. A. Maccioni, J. C. Dainty, “Measurement of thermally induced optical turbulence in a water cell,” J. Mod. Opt. 44(6), 1111–1126 (1997). [CrossRef]
  18. J. Zhang, Z. Y. Zeng, “Statistical properties of optical turbulence in a convective tank: experimental results,” J. Opt. 3(4), 236–241 (2001). [CrossRef]
  19. Z. B. Gong, Y. J. Wang, Y. Wu, “Finite temporal measurements of the statistical characteristics of the atmospheric coherence length,” Appl. Opt. 37(21), 4541–4543 (1998). [CrossRef] [PubMed]
  20. R. Yuan, School of Earth and Space Sciences, University of Science and Technology of China, Anhui, 230026, China, and J. Sun are preparing a manuscript to be called ” Simulation study on light propagation in an anisotropic turbulence field of the entrainment zone.”
  21. G. K. Batchelor, “Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1. General discussion and the case of small conductivity,” J. Fluid Mech. 5(01), 113–133 (1959). [CrossRef]
  22. R. J. Hill, S. F. Clifford, “Modified spectrum of atmospheric temperature fluctuations and its application to optical propagation,” J. Opt. Soc. Am. A 68(7), 892–899 (1978). [CrossRef]
  23. C. H. Gibson, W. H. Schwarz, “The universal equilibrium spectra of turbulent velocity and scalar fields,” J. Fluid Mech. 16(03), 365–384 (1963). [CrossRef]
  24. H. L. Grant, B. A. Hughes, W. M. Vogel, A. Moilliet, “The spectrum of temperature fluctuations in turbulent flow,” J. Fluid Mech. 34(03), 423–442 (1968). [CrossRef]
  25. H. M. Dobbins, E. R. Peck, “Change of refractive index of water as a function of temperature,” J. Opt. Soc. Am. A 63(3), 318–320 (1973). [CrossRef]
  26. R. Frehlich, “Effects of global intermittency on laser propagation in the atmosphere,” Appl. Opt. 33(24), 5764–5769 (1994). [CrossRef] [PubMed]
  27. R. J. Hill, J. H. Churnside, “Observational challenges of strong scintillations of irradiance,” J. Opt. Soc. Am. A 5(3), 445–447 (1988). [CrossRef]
  28. J. M. Martin, S. M. Flatté, “Intensity images and statistics from numerical simulation of wave propagation in 3-D random media,” Appl. Opt. 27(11), 2111–2126 (1988). [CrossRef] [PubMed]
  29. S. J. Caughey, S. G. Palmer, “Some aspects of turbulence structure through the depth of the convective boundary layer,” Q. J. R. Meteorol. Soc. 105(446), 811–827 (1979). [CrossRef]
  30. R. Yuan, J. Sun, K. Yao, Z. Zeng, W. Jiang, “A laboratory simulation of the atmospheric boundary layer analyses of temperature structure in the entrainment zone,” Chin. J. Atmos. Sci. 26, 773–780 (2002).
  31. J. C. Kaimal, J. C. Wyngaard, D. A. Haugen, O. R. Cote, Y. Izumi, S. J. Caughey, C. J. Readings, “Turbulence structure in convective boundary-layer,” J. Atmos. Sci. 33(11), 2152–2169 (1976). [CrossRef]
  32. F. Beyrich, S. E. Gryning, “Estimation of the entrainment zone depth in a shallow convective boundary layer from sodar data,” J. Appl. Meteorol. Climatol. 37(3), 255–268 (1998). [CrossRef]
  33. T. Luo, R. Yuan, X. Wu, S. Deng, “A new parameterization of temperature structure parameter in entraining convective boundary layer,” Opt. Commun. 281(23), 5683–5686 (2008). [CrossRef]
  34. P. Stoica and R. L. Moses, Introduction to Spectral Analysis (Prentice-Hall, 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited