OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 7210–7221

Frequency stabilization of a 369 nm diode laser by nonlinear spectroscopy of Ytterbium ions in a discharge

Michael W Lee, Marie Claire Jarratt, Christian Marciniak, and Michael J Biercuk  »View Author Affiliations

Optics Express, Vol. 22, Issue 6, pp. 7210-7221 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1409 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate stabilization of an ultraviolet diode laser via Doppler-free spectroscopy of Ytterbium ions in a discharge. Our technique employs polarization spectroscopy, which produces a natural dispersive lineshape whose zero-crossing is largely immune to environmental drifts, making this signal an ideal absolute frequency reference for Yb+ ion trapping experiments. We stabilize an external-cavity diode laser near 369 nm for cooling Yb+ ions, using amplitude modulated polarization spectroscopy and a commercial PID feedback system. We achieve stable, low-drift locking with a standard deviation of measured laser frequency ∼ 400 kHz over 10 minutes, limited by the instantaneous linewidth of the diode laser. These results and the simplicity of our optical setup makes our approach attractive for stabilization of laser sources in atomic physics applications.

© 2014 Optical Society of America

OCIS Codes
(300.6420) Spectroscopy : Spectroscopy, nonlinear
(140.3425) Lasers and laser optics : Laser stabilization
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 6, 2014
Revised Manuscript: March 11, 2014
Manuscript Accepted: March 12, 2014
Published: March 19, 2014

Michael W Lee, Marie Claire Jarratt, Christian Marciniak, and Michael J Biercuk, "Frequency stabilization of a 369 nm diode laser by nonlinear spectroscopy of Ytterbium ions in a discharge," Opt. Express 22, 7210-7221 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. J. Metcalf, P. Van der Straten, Laser Cooling and Trapping (Springer, 1999). [CrossRef]
  2. A. Arie, S. Schiller, E. K. Gustafson, R. L. Byer, “Absolute frequency stabilization of diode-laser-pumped Nd:YAG lasers to hyperfine transitions in molecular iodine,” Opt. Lett. 17, 1204–1206 (1992). [CrossRef] [PubMed]
  3. A. J. Wallard, “Frequency stabilization of Helium-Neon laser by saturated absorption in iodine vapour,” J. Phys. E: Scient. Instr. 5, 926–930 (1972). [CrossRef]
  4. K. L. Corwin, Z. T. Lu, C. F. Hand, R. J. Epstein, C. E. Wieman, “Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor,” Appl. Opt. 37, 3295–3298 (1998). [CrossRef]
  5. A. Ratnapala, C. J. Vale, A. G. White, M. D. Harvey, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Laser frequency locking by direct measurement of detuning,” Opt. Lett. 29(23), 2704–2706 (2004). [CrossRef] [PubMed]
  6. T. W. Hänsch, B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35(3), 441444 (1980). [CrossRef]
  7. R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983). [CrossRef]
  8. D. Kielpinski, M. Cetina, J. A. Cox, F. X. Kärtner, “Laser cooling of trapped ytterbium ions with an ultraviolet diode laser,” Opt. Lett. 31, 757–759 (2006). [CrossRef] [PubMed]
  9. A. -T. Nguyen, L. -B. Wang, M. M. Schauer, J. R. Torgerson, “Extended Temperature Tuning of An Ultraviolet Diode Laser for Trapping And Cooling Single Yb+ ions,” Rev. Sci. Instrum., 813, 053110 (2010). [CrossRef]
  10. C. Wunderlich, C. Balzer, “Quantum measurements and new concepts for experiments with trapped ions,” Adv. At. Mol. Opt. Phys. 49, 293–376 (2003). [CrossRef]
  11. P. Gill, H. A. Klein, A. P. Levick, M. Roberts, W. R. C. Rowley, P. Taylor, “Measurement of the 2S1/2− 2D5/2411-nm interval in laser-cooled trapped 172Yb+ ions,” Phys. Rev. A 52, R909–R912 (1995). [CrossRef]
  12. K. Sugiyama, J. Yoda, “Laser cooling of a natural isotope mixture of Yb+ stored in an RF trap,” IEEE Trans. Instrum. Meas. 44, 140–143 (1995). [CrossRef]
  13. A. Arie, M. L. Bortz, M. M. Fejer, R. L. Byer, “Iodine spectroscopy and absolute frequency stabilization with the second harmonic of the 1319-nm Nd:YAG laser,” Opt. Lett. 18, 1757–1759, (1993). [CrossRef] [PubMed]
  14. S. Gerstenkorn, P. Luc, “Description of the absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the B− X system,” Journal de Physique 46, 867–881 (1985). [CrossRef]
  15. W. Demtröder, Laser Spectroscopy: Vol. 2: Experimental Techniques(Springer, 2008).
  16. C. Wieman, T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976). [CrossRef]
  17. E. W. Streed, T. J. Weinhold, D. Kielpinski, “Frequency stabilization of an ultraviolet laser to ions in a discharge,” Appl. Phys. Lett. 93, 071103 (2008). [CrossRef]
  18. M. J. Petrasiunas, E. W. Streed, T. J. Weinhold, B. G. Norton, D. Kielpinski, “Optogalvanic spectroscopy of metastable states in Yb+,” Appl. Phys. B 107, 1053–1059 (2012). [CrossRef]
  19. W. Wang, J. Ye, M. Zhou, X. Xu, “Frequency stabilization of a 399nm laser by modulation transfer spectroscopy in an ytterbium hollow cathode lamp,” in Conference on Lasers and Electro-Optics/Pacific Rim 2009, (Optical Society of America, 2009), paper TuB1. and Chin. Phys. B 20, 013201 (2011).
  20. C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35(24), 5141–5151 (2002). [CrossRef]
  21. L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995). [CrossRef]
  22. P. R. Sasi Kumar, V. P. N. Nampoori, C. P. G. Vallabhan, “Photoemission optogalvanic effect near the instability region of a hollow cathode discharge,” Opt. Commun. 118, 525–528 (1995). [CrossRef]
  23. D. Zhechev, N. Bundaleska, J. T. Costello., “Instrumental contributions to the time-resolved optogalvanic signal in a hollow cathode discharge,” J. Phys. D: Appl. Phys. 38, 2237–2243 (2005). [CrossRef]
  24. B. E. King, “Quantum state engineering and information processing with trapped ions” Ph. D. thesis, Department of Physics, University of Colorado, Boulder, (1999).
  25. S. Olmschenk, “Quantum Teleportation Between Distant Matter Qubits,” Ph. D. thesis, University of Michigan, (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited