OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 7222–7228

Strong optical injection and the differential gain in a quantum dash laser

Luke F. Lester, Nader A. Naderi, Frederic Grillot, Ravi Raghunathan, and Vassilios Kovanis  »View Author Affiliations

Optics Express, Vol. 22, Issue 6, pp. 7222-7228 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1578 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



By optically injecting a quantum dash laser and simultaneously producing a significant lowering of the device threshold, a large enhancement in the differential gain is realized. This effect is observed by way of a dramatic reduction in the linewidth enhancement factor and a large increase in the 3-dB modulation bandwidth, especially as the injection wavelength is blue-shifted. Compared to its free-running value, a 50X improvement in the laser’s differential gain is found.

© 2014 Optical Society of America

OCIS Codes
(140.3520) Lasers and laser optics : Lasers, injection-locked
(250.5960) Optoelectronics : Semiconductor lasers
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Optical Devices

Original Manuscript: January 21, 2014
Revised Manuscript: March 3, 2014
Manuscript Accepted: March 3, 2014
Published: March 20, 2014

Virtual Issues
Physics and Applications of Laser Dynamics (2014) Optics Express

Luke F. Lester, Nader A. Naderi, Frederic Grillot, Ravi Raghunathan, and Vassilios Kovanis, "Strong optical injection and the differential gain in a quantum dash laser," Opt. Express 22, 7222-7228 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. T. Liu, A. Stintz, H. Li, K. J. Malloy, L. F. Lester, “Extremely low room-temperature threshold current density diode lasers using lnAs dots in In0.15Ga0.85As quantum well,” Electron. Lett. 35(14), 1163–1165 (1999). [CrossRef]
  2. O. B. Shchekin, J. Ahn, D. G. Deppe, “High temperature performance of self-organized quantum dot laser with stacked p-doped active region,” Electron. Lett. 38(14), 712–713 (2002). [CrossRef]
  3. M. T. Crowley, N. A. Naderi, H. Su, F. Grillot, and L. F. Lester, Semiconductors and Semimetals: Advances in Semiconductor Lasers (Academic, 2012), vol. 86, Chap. 10.
  4. M. Asada, Y. Miyamoto, Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron. 22(9), 1915–1921 (1986). [CrossRef]
  5. T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photonics Technol. Lett. 11(12), 1527–1529 (1999). [CrossRef]
  6. K. Y. Lau, S. Xin, W. I. Wang, N. Bar-Chaim, M. Mittelstein, “Enhancement of modulation bandwidth in InGaAs strained-layer single quantum well lasers,” Appl. Phys. Lett. 55(12), 1173–1175 (1989). [CrossRef]
  7. Y. Arakawa, A. Yariv, “Theory of gain, modulation response, and spectral linewidth in AlGaAs quantum well lasers,” IEEE J. Quantum Electron. 21(10), 1666–1674 (1985). [CrossRef]
  8. K. J. Vahala, C. E. Zah, “Effect of doping on the optical gain and the spontaneous noise enhancement factor in quantum well amplifiers and lasers studied by simple analytical expressions,” Appl. Phys. Lett. 52(23), 1945–1947 (1988). [CrossRef]
  9. Z. Mi, P. Bhattacharya, “DC and dynamic characteristics of P-doped and tunnel injection 1.65-μm InAs quantum-dash lasers grown on InP (001),” IEEE J. Quantum Electron. 42, 1224–1232 (2006). [CrossRef]
  10. A. Martinez, Y. Li, L. F. Lester, A. L. Gray, “Microwave frequency characterization of undoped and p-doped quantum dot lasers,” Appl. Phys. Lett. 90(25), 251101 (2007). [CrossRef]
  11. M. Bayer, A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots,” Phys. Rev. B 65(4), 041308 (2002). [CrossRef]
  12. D. R. Matthews, H. D. Summers, P. M. Smowton, M. Hopkinson, “Experimental investigation of the effect of wetting-layer states on the gain-current characteristic of quantum-dot lasers,” Appl. Phys. Lett. 81(26), 4904–4906 (2002). [CrossRef]
  13. P. M. Smowton, E. J. Pearce, H. C. Schneider, W. W. Chow, M. Hopkinson, “Filamentation and linewidth enhancement factor in InGaAs quantum dot lasers,” Appl. Phys. Lett. 81(17), 3251–3253 (2002). [CrossRef]
  14. A. V. Uskov, E. P. O’Reilly, D. McPeake, N. N. Ledentsov, D. Bimberg, G. Huyet, “Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states,” Appl. Phys. Lett. 84(2), 272–274 (2004). [CrossRef]
  15. J. Muszalski, J. Houlihan, G. Huyet, B. Corbett, “Measurement of linewidth enhancement factor in self-assembled quantum dot semiconductor lasers emitting at 1310nm,” Electron. Lett. 40(7), 428–430 (2004). [CrossRef]
  16. A. Markus, J. X. Chen, O. Gauthier-Lafaye, J. Provost, C. Paranthoen, A. Fiore, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1308–1314 (2003). [CrossRef]
  17. T. B. Simpson, J. M. Liu, A. Gavrielides, “Small-signal analysis of modulation characteristics in a semiconductor laser subject to strong optical injection,” IEEE J. Quantum Electron. 32(8), 1456–1468 (1996). [CrossRef]
  18. E. K. Lau, H. K. Sung, M. C. Wu, “Frequency response enhancement of optical injection locked lasers,” IEEE J. Quantum Electron. 44(1), 90–99 (2008). [CrossRef]
  19. B. Riou, N. Trenado, F. Grillot, F. Mallecot, V. Colson, M. F. Martineau, B. Thédrez, L. Silvestre, D. Meichenin, K. Merghem, and A. Ramdane, “High performance strained-layer InGaAsP/InP laser with low linewidth enhancement factor over 30 nm,” in Proceedings of IEEE European Conference on Optical Communication (ECOC) (2003), paper We4.P.85, Rimini, Italy.
  20. T. B. Simpson, J.-M. Liu, M. AlMulla, N. G. Usechak, V. Kovanis, “Tunable photonic microwave oscillator self-locked by polarization- rotated optical feedback,” in Proc. IEEE Int. Freq. Control Symp., May 2012, pp. 1–5. [CrossRef]
  21. S.-Z. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron. 46(3), 421–428 (2010). [CrossRef]
  22. S. Chan, J.-M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1025–1032 (2004). [CrossRef]
  23. D. J. Bossert, D. Gallant, “Improved method for gain/index measurements of semiconductor lasers,” Electron. Lett. 32(4), 338–339 (1996). [CrossRef]
  24. C. Harder, K. Vahala, A. Yariv, “Measurement of the linewidth enhancement factor α of semiconductor lasers,” Appl. Phys. Lett. 42(4), 328–330 (1983). [CrossRef]
  25. N. A. Naderi, M. Pochet, F. Grillot, N. B. Terry, V. Kovanis, L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 563–571 (2009). [CrossRef]
  26. M. Pochet, N. A. Naderi, N. Terry, V. Kovanis, L. F. Lester, “Dynamic behavior of an injection-locked quantum-dash Fabry-Perot laser at zero-detuning,” Opt. Express 17(23), 20623–20630 (2009). [CrossRef] [PubMed]
  27. M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, L. F. Lester, “Tunable photonic oscillators using optically injected quantum-dash diode lasers,” IEEE Photonics Technol. Lett. 22(11), 763–765 (2010). [CrossRef]
  28. L. F. Lester, F. Grillot, N. A. Naderi, V. Kovanis, “Differential gain enhancement in a quantum dash laser using strong optical injection,” Proc. SPIE 8619, 861907 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited