OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 7261–7268

Fringe-field carrier-depletion modulators with high modulation efficiency and low free carrier absorption

Kai-Ning Ku and Ming-Chang M. Lee  »View Author Affiliations

Optics Express, Vol. 22, Issue 6, pp. 7261-7268 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1203 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A high-speed carrier-depletion silicon modulator based on a fringe field pn junction design is presented. Due to the strong fringe field, the size of heavily doped regions can be reduced and away from the waveguide core, whereas large modulation efficiency is still accomplishable. The VπL is 1.8 V-cm and the phase shifter loss is 1.3 dB/mm. The figure of merit (FOM), defined by the product of VπL and phase shifter loss, is estimated to be 23.4 dB-V. The modulation speed and depth are 11.8 GHz and 8.1 dB, respectively, which is mainly limited by the mobility of poly-Si.

© 2014 Optical Society of America

OCIS Codes
(250.0250) Optoelectronics : Optoelectronics
(250.4110) Optoelectronics : Modulators

ToC Category:

Original Manuscript: February 19, 2014
Revised Manuscript: March 13, 2014
Manuscript Accepted: March 14, 2014
Published: March 20, 2014

Kai-Ning Ku and Ming-Chang M. Lee, "Fringe-field carrier-depletion modulators with high modulation efficiency and low free carrier absorption," Opt. Express 22, 7261-7268 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Dragone, “An N*N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3(9), 812–815 (1991). [CrossRef]
  2. C. Dragone, C. A. Edwards, R. C. Kistler, “Integrated optics N*N multiplexer on silicon,” IEEE Photon. Technol. Lett. 3(10), 896–899 (1991). [CrossRef]
  3. X. Fang, R. O. Claus, “Polarization-independent all-fiber wavelength-division multiplexer based on a Sagnac interferometer,” Opt. Lett. 20(20), 2146–2148 (1995). [CrossRef] [PubMed]
  4. D. W. Kim, A. Barkai, R. Jones, N. Elek, H. Nguyen, A. Liu, “Silicon-on-insulator eight-channel optical multiplexer based on a cascade of asymmetric Mach-Zehnder interferometers,” Opt. Lett. 33(5), 530–532 (2008). [CrossRef] [PubMed]
  5. H. Takahashi, K. Oda, H. Toba, “Impact of crosstalk in an arrayed-waveguide multiplexer on NxN optical interconnection,” J. Lightwave Technol. 14(6), 1097–1105 (1996). [CrossRef]
  6. H. Talahashi, K. Oda, H. Toba, Y. Inoue, “Transmission characteristics of arrayed waveguide N×N wavelength multiplexer,” J. Lightwave Technol. 13(3), 447–455 (1995). [CrossRef]
  7. W. C. Chiu, C. Y. Lu, M. C. M. Lee, “Monolithic integration of 2-D multimode interference couplers and silicon photonic wires,” IEEE J. Sel. Top. Quantum Electron. 17(3), 540–545 (2011). [CrossRef]
  8. X. Tu, T. Y. Liow, J. Song, M. Yu, G. Q. Lo, “Fabrication of low loss and high speed silicon optical modulator using doping compensation method,” Opt. Express 19(19), 18029–18035 (2011). [CrossRef] [PubMed]
  9. D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, G. T. Reed, “High contrast 40Gbit/s optical modulation in silicon,” Opt. Express 19(12), 11507–11516 (2011). [CrossRef] [PubMed]
  10. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004). [CrossRef] [PubMed]
  11. W. M. Green, M. J. Rooks, L. Sekaric, Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007). [CrossRef] [PubMed]
  12. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007). [CrossRef] [PubMed]
  13. Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005). [CrossRef] [PubMed]
  14. M. Ziebell, D. Marris-Morini, G. Rasigade, J. M. Fédéli, P. Crozat, E. Cassan, D. Bouville, L. Vivien, “40 Gbit/s low-loss silicon optical modulator based on a pipin diode,” Opt. Express 20(10), 10591–10596 (2012). [CrossRef] [PubMed]
  15. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007). [CrossRef] [PubMed]
  16. D. Ahn, C. Y. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, F. X. Kärtner, “High performance, waveguide integrated Ge photodetectors,” Opt. Express 15(7), 3916–3921 (2007). [CrossRef] [PubMed]
  17. C. K. Tseng, W. T. Chen, K. H. Chen, H. D. Liu, Y. Kang, N. Na, and M. C. M. Lee, “A self-assembled microbonded Germanium/Silicon heterojunction photodiodes for 25 Gb/s high-speed optical interconnects,” Scientific Report 3 (2013).
  18. T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, D. L. Kwong, “Silicon Modulators and Germanium Photodetectors on SOI: Monolithic Integration, Compatibility, and Performance Optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010). [CrossRef]
  19. L. Vivien, J. Osmond, J. M. Fédéli, D. Marris-Morini, P. Crozat, J. F. Damlencourt, E. Cassan, Y. Lecunff, S. Laval, “42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express 17(8), 6252–6257 (2009). [CrossRef] [PubMed]
  20. T. T. Wu, C. Y. Chou, M. C. Lee, N. Na, “A critically coupled Germanium photodetector under vertical illumination,” Opt. Express 20(28), 29338–29346 (2012). [CrossRef] [PubMed]
  21. G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 0(0), 1–18 (2013). [CrossRef]
  22. G. K. Reeves, H. B. Harrison, “Obtaining the Specific contact resistance from transmission-line model measurements,” IEEE Electron Device Lett. 3(5), 111–113 (1982). [CrossRef]
  23. T. Kamins, Polycrystalline Silicon for Integrated Circuits and Displays (Kluwer Academic Publishers, 1998).
  24. P. Sangwoo, S. Taichi, J. P. Denton, G. W. Neudeck, “Multiple layers of silicon- on-insulator islands fabrication by selective epitaxial growth,” IEEE Electron Device Lett. 20(5), 194–196 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited