OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 7290–7307

The partial space qualification of a vertically aligned carbon nanotube coating on aluminium substrates for EO applications

Evangelos Theocharous, Christopher J. Chunnilall, Ryan Mole, David Gibbs, Nigel Fox, Naigui Shang, Guy Howlett, Ben Jensen, Rosie Taylor, Juan R. Reveles, Oliver B. Harris, and Naseer Ahmed  »View Author Affiliations

Optics Express, Vol. 22, Issue 6, pp. 7290-7307 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1960 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The fabrication of NanoTube Black, a Vertically Aligned carbon NanoTube Array (VANTA) on aluminium substrates is reported for the first time. The coating on aluminium was realised using a process that employs top down thermal radiation to assist growth, enabling deposition at temperatures below the substrate’s melting point. The NanoTube Black coatings were shown to exhibit directional hemispherical reflectance values of typically less than 1% across wavelengths in the 2.5 µm to 15 µm range. VANTA-coated aluminium substrates were subjected to space qualification testing (mass loss, outgassing, shock, vibration and temperature cycling) before their optical properties were re-assessed. Within measurement uncertainty, no changes to hemispherical reflectance were detected, confirming that NanoTube Black coatings on aluminium are good candidates for Earth Observation (EO) applications.

© 2014 Optical Society of America

OCIS Codes
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(260.3060) Physical optics : Infrared

ToC Category:

Original Manuscript: November 27, 2013
Revised Manuscript: March 4, 2014
Manuscript Accepted: March 5, 2014
Published: March 21, 2014

Evangelos Theocharous, Christopher J. Chunnilall, Ryan Mole, David Gibbs, Nigel Fox, Naigui Shang, Guy Howlett, Ben Jensen, Rosie Taylor, Juan R. Reveles, Oliver B. Harris, and Naseer Ahmed, "The partial space qualification of a vertically aligned carbon nanotube coating on aluminium substrates for EO applications," Opt. Express 22, 7290-7307 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. R. Blevin, J. Geist, “Influence of black coatings on pyroelectric detectors,” Appl. Opt. 13(5), 1171–1178 (1974). [CrossRef] [PubMed]
  2. M. J. Persky, “Review of black surfaces for space-borne infrared systems,” Rev. Sci. Instrum. 70(5), 2193–2217 (1999). [CrossRef]
  3. S. M. Pompea, D. W. Bergener, and D. F. Shepard, “Optically black coating with improved infrared absorption and process of formation,” United states Patent Number 4,589,972 (1986).
  4. K. A. Karki, “Process for forming an optical black surface and surface formed thereby,” Patent application number US 05/946,786 (1979).
  5. S. Kodama, M. Horiuchi, T. Kunii, K. Kuroda, “Ultra-black nickel-phosphorous alloy optical absorber,” IEEE Trans. Instrum. Meas. 39(1), 230–232 (1990). [CrossRef]
  6. R. J. C. Brown, P. J. Brewer, M. J. T. Milton, “The physical and chemical properties of electroless nickel-phosphorous alloys and low reflectance nickel-phosphorous black surfaces,” J. Mater. Chem. 12(9), 2749–2754 (2002). [CrossRef]
  7. F. J. García-Vidal, J. M. Pitarke, J. B. Pendry, “Effective medium theory of the optical properties of aligned carbon nanotubes,” Phys. Rev. Lett. 78(22), 4289–4292 (1997). [CrossRef]
  8. Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8(2), 446–451 (2008). [CrossRef] [PubMed]
  9. K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009). [CrossRef] [PubMed]
  10. M. A. Quijada, J. G. Hagopian, S. Getty, R. E. Kinzer, and E. J. Wollack, “Hemispherical reflectance and emittance properties of Carbon nanotube coatings at infrared wavelengths,” Proc. of SPIE 8150 (2011).
  11. Z. P. Yang, M. L. Hsieh, J. A. Bur, L. Ci, L. M. Hanssen, B. Wilthan, P. M. Ajayan, S. Y. Lin, “Experimental observation of extremely weak optical scattering from an interlocking carbon nanotube array,” Appl. Opt. 50(13), 1850–1855 (2011). [CrossRef] [PubMed]
  12. E. Theocharous, R. Deshpande, A. C. Dillon, J. Lehman, “Evaluation of a pyroelectric detector with a carbon multiwalled nanotube black coating in the infrared,” Appl. Opt. 45(6), 1093–1097 (2006). [CrossRef] [PubMed]
  13. S. P. Theocharous, E. Theocharous, J. H. Lehman, “The evaluation of the performance of two pyroelectric detectors with vertically aligned multi-walled carbon nanotube coatings,” Infr. Phys. & Tech. 55(4), 299–305 (2012). [CrossRef]
  14. C. J. Chunnilall, J. H. Lehman, E. Theocharous, A. Sanders, “Infrared hemispherical reflectance of carbon nanotube mats and arrays in the 5–50 µm wavelength region,” Carbon 50(14), 5348–5350 (2012). [CrossRef]
  15. J. H. Lehman, B. Lee, E. N. Grossman, “Far infrared thermal detectors for laser radiometry using a carbon nanotube array,” Appl. Opt. 50(21), 4099–4104 (2011). [CrossRef] [PubMed]
  16. M. A. Quijada, M. Wilson, E. Waluschka, C. R. McClain, “Optical component performance for the Ocean Radiometer for Carbon Assessment (ORCA),” Proc. SPIE 8153, Earth Observing SystemsXVI, (2011), doi:. [CrossRef]
  17. P. J. Gero, J. A. Dykema, J. G. Anderson, “A Blackbody design for SI-traceable radiometry for Earth Observation,” J. Atmos. Ocean. Technol. 25(11), 2046–2054 (2008). [CrossRef]
  18. I. M. Mason, P. H. Sheather, J. A. Bowles, G. Davies, “Blackbody calibration sources of high accuracy for a spaceborne infrared instrument: the Along Track Scanning Radiometer,” Appl. Opt. 35(4), 629–639 (1996). [CrossRef] [PubMed]
  19. C. Lijie, R. Vajtai, P. M. Ajayan, “Vertically Aligned Large-Diameter Double-Walled Carbon Nanotube Arrays Having Ultralow Density,” J. Phys. Chem. C 111(26), 9077–9080 (2007). [CrossRef]
  20. N. G. Shang, Y. Y. Tan, V. Stolojan, P. Papakonstantinou, S. R. P. Silva, “High-rate low-temperature growth of vertically aligned carbon nanotubes,” Nanotechnology 21(50), 505604 (2010). [CrossRef] [PubMed]
  21. G. Y. Chen, B. Jensen, V. Stolojan, S. R. P. Silva, “Growth of carbon nanotubes at temperatures compatible with integrated circuit technologies,” Carbon 49(1), 280–285 (2011). [CrossRef]
  22. C. Chunnilall, E. Theocharous, “Infrared hemispherical reflectance measurements in the 2.5 μm to 50 μm wavelength region using an FT spectrometer,” Metrologia 49, S73–S80 (2012). [CrossRef]
  23. J. M. Palmer, “The measurement of transmission absorption emission and reflection,” in Handbook of Optics, 2nd edition, M. Bass, editor (McGraw-Hill, 1994), Part II, Chapter 25.
  24. F. J. J. Clarke, D. J. Parry, “Helmholtz reciprocity: Its validity and application to reflectometry,” Light. Res. Technol 17, 1–11 (1985).
  25. S. Berber, Y. K. Kwon, D. Tomanek, “Unusually high thermal conductivity of carbon nanotubes,” Phys. Rev. Lett. 84(20), 4613–4616 (2000). [CrossRef] [PubMed]
  26. A. Okamoto, I. Gunjishima, T. Inoue, M. Akoshima, H. Miyagawa, T. Nakano, T. Tanemura, G. Oomi, “Thermal and electrical conduction properties of vertically aligned carbon nanotubes produced by water-assisted chemical vapor deposition,” Carbon 49(1), 294–298 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited