OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 7337–7348

Near-perfect absorption in epsilon-near-zero structures with hyperbolic dispersion

Klaus Halterman and J. Merle Elson  »View Author Affiliations


Optics Express, Vol. 22, Issue 6, pp. 7337-7348 (2014)
http://dx.doi.org/10.1364/OE.22.007337


View Full Text Article

Enhanced HTML    Acrobat PDF (4665 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the interaction of polarized electromagnetic waves with hyperbolic metamaterial structures, whereby the in-plane permittivity component εx is opposite in sign to the normal component εz. We find that when the thickness of the metamaterial is smaller than the wavelength of the incident wave, hyperbolic metamaterials can absorb significantly higher amounts of electromagnetic energy compared to their conventional counterparts. We also demonstrate that for wavelengths leading to ℜ(εz) ≈ 0, near-perfect absorption arises and persists over a range of frequencies and subwavelength structure thicknesses.

© 2014 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: January 10, 2014
Revised Manuscript: February 28, 2014
Manuscript Accepted: March 4, 2014
Published: March 21, 2014

Citation
Klaus Halterman and J. Merle Elson, "Near-perfect absorption in epsilon-near-zero structures with hyperbolic dispersion," Opt. Express 22, 7337-7348 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-6-7337


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Sievenpiper, L. Zhang, R. Broas, N. G. Alexopolous, E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47(11), 2059–2074 (1999). [CrossRef]
  2. M. G. Silveirinha, N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials”, Phys. Rev. Lett. 97(15), 157403 (2006). [CrossRef] [PubMed]
  3. K. Halterman, S. Feng, “Resonant transmission of electromagnetic fields through subwavelength zero-ε slits,” Phys. Rev. A 78, 021805 (2008). [CrossRef]
  4. K. Halterman, S. Feng, V. C. Nguyen, “Controlled leaky wave radiation from anisotropic epsilon near zero metamaterials,” Phys. Rev. B 84, 075162 (2011). [CrossRef]
  5. S. Feng, K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B 86, 165103 (2012). [CrossRef]
  6. S. Molesky, C. J. Dewalt, Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21(S1), A96–A110 (2013). [CrossRef] [PubMed]
  7. D. Schurig, D. R. Smith, “Spatial filtering using media with indefinite permittivity and permeability tensors,” Appl. Phys. Lett. 82, 2215–2217 (2003). [CrossRef]
  8. C. L. Cortes, W. Newman, S. Molesky, Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt. 14(6), 063001 (2012). [CrossRef]
  9. Y. Liu, G. Bartal, X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express 16(20), 15439–15448 (2008). [CrossRef] [PubMed]
  10. I. Nefedov, S. Tretyakov, “Ultrabroadband electromagnetically indenite medium formed by aligned carbon nanotubes,” Phys. Rev. B 84(11), 113410 (2011). [CrossRef]
  11. X. Ni, S. Ishii, M. D. Thoreson, V. M. Shalaev, S. Han, S. Lee, A. V. Kildishev, “Loss-compensated and active hyperbolic metamaterials,” Opt. Express 19(25), 25242–25254 (2011). [CrossRef]
  12. S. Savoia, G. Castaldi, V. Galdi, “Optical nonlocality in multilayered hyperbolic metamaterials based on Thue-Morse superlattices,” Phys. Rev. B 87, 235116 (2013). [CrossRef]
  13. O. Kidwai, S. V. Zhukovsky, J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic metamaterials: Strengths and limitations,” Phys. Rev. A 85(5), 053842 (2012). [CrossRef]
  14. W. Yan, M. Wubs, N. A. Mortensen, “Hyperbolic metamaterials: nonlocal response regularizes broadband supersingularity,” Phys. Rev. B 86, 205429 (2012). [CrossRef]
  15. T. Tumkur, L. Gu, J. Kitur, E. Narimanov, M. Noginov, “Control of absorption with hyperbolic metamaterials,” Appl. Phys. Lett. 100, 161103 (2012). [CrossRef]
  16. F. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013). [CrossRef]
  17. W. Li, Z. Liu, X. Zhang, X. Jiang, “Switchable hyperbolic metamaterials with magnetic control,” Appl. Phys. Lett. 100, 1611084 (2012). [CrossRef]
  18. C. Rizza, A. Ciattoni, E. Spinozzi, L. Columbo, “Terahertz active spatial filtering through optically tunable hyperbolic metamaterials,” Opt. Lett. 37, 3345–3347 (2012). [CrossRef]
  19. C. Rizza, A. Ciattoni, L. Columbo, M. Brambilla, F. Prati, “Terahertz optically tunable dielectric metamaterials without microfabrication,” Opt. Lett. 38, 1307 (2013). [CrossRef] [PubMed]
  20. W. Yan, L. Shen, L. Ran, J. A. Kong, “Surface modes at the interfaces between isotropic media and indefinite media,” J. Opt. Soc. Am. A 24, 530 (2007). [CrossRef]
  21. K.V. Sreekanth, A. De Luca, G. Strangi, “Experimental demonstration of surface and bulk plasmon polaritons in hypergratings,” Sci. Rep. 3, 3291 (2013). [CrossRef] [PubMed]
  22. E. Narimanov, M. A. Noginov, H. Li, Y. Barnakov, “Darker than Black: Radiation-absorbing Metamaterial,” in Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper QPDA6. [CrossRef]
  23. T. U. Tumkur, J. K. Kitur, B. Chu, L. Gu, V. A. Podolskiy, E. E. Narimanov, M. A. Noginov, “Control of reflectance and transmittance in scattering and curvilinear hyperbolic metamaterials,” Appl. Phys. Lett. 101, 091105 (2012). [CrossRef]
  24. J. M. Zhao, Y. Chen, Y. J. Feng, “Polarization beam splitting through an anisotropic metamaterial slab realized by a layered metal-dielectric structure,” Appl. Phys. Lett. 92, 071114 (2008). [CrossRef]
  25. G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109, (23)8834–8838 (2012). [CrossRef] [PubMed]
  26. J. P. Berenger, “A perfect matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994). [CrossRef]
  27. Z. Sacks, D. M. Kingsland, R. Lee, J. F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Ant. Prop. 43, 1460–1463, (1995). [CrossRef]
  28. J. Merle Elson, “Propagation in planar waveguides and the effects of wall roughness,” Opt. Express 9, 461–475 (2001). [CrossRef] [PubMed]
  29. J. M. Elson, Proc. SPIE 4780, Surface Scattering and Diffraction for Advanced Metrology II, 32, (October1, 2002).
  30. Y. Jin, S. Xiao, N.A. Mortensen, S. He, “Arbitrarily thin metamaterial structure for perfect absorption and giant magnification,” Opt. Express 19, 11114 (2011). [CrossRef] [PubMed]
  31. See, for example, J. D. Jackson, Classical Electrodynamics, 3 (Wiley and Sons, 1998).
  32. D. R. Smith, D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003). [CrossRef] [PubMed]
  33. I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen, S. Ilvonen, “BW media media with negative parameters, capable of supporting backward waves,” Microw. Opt. Technol. Lett 31, 129 (2001). [CrossRef]
  34. J. Yang, X. Hu, X. Li, Z. Liu, X. Jiang, J. Zi, “Cancellation of reflection and transmission at metamaterial surfaces,” Opt. Lett. 35, 16 (2010). [CrossRef] [PubMed]
  35. H. Hu, D. Ji, X. Zeng, K. Liu, Q. Gan, “Rainbow Trapping in Hyperbolic Metamaterial Waveguide,” Sci. Rep. 3, 1249 (2013). [CrossRef] [PubMed]
  36. W. T. Lu, S. Sridhar, “Slow light, open-cavity formation, and large longitudinal electric eld on a slab waveguide made of indenite permittivity metamaterials,” Phys. Rev. A 82, 013811 (2010). [CrossRef]
  37. C. Rizza, A. Ciattoni, E. Palange, “Two-peaked and flat-top perfect bright solitons in nonlinear metamaterials with epsilon near zero,” Phys. Rev. A 83, 053805 (2011). [CrossRef]
  38. M. A. Vincenti, D. de Ceglia, A. Ciattoni, M. Scalora, “Singularity-driven second- and third-harmonic generation at ε-near-zero crossing points,” Phys. Rev. A 84, 063826 (2011). [CrossRef]
  39. A. Ciattoni, C. Rizza, E. Palange, “Transverse power flow reversing of guided waves in extreme nonlinear metamaterials,” Opt. Lett. 18, 11911 (2010).
  40. A. Ciattoni, C. Rizza, E. Palange, “Transmissivity directional hysteresis of a nonlinear metamaterial slab with very small linear permittivity,” Opt. Lett. 35, 2130 (2010). [CrossRef] [PubMed]
  41. R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A.V. Zayats, V.A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 102, 127405 (2009). [CrossRef] [PubMed]
  42. A. A. Orlov, P. M. Voroshilov, P. A. Belov, Y. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84, 045424 (2011). [CrossRef]
  43. D. J. Bergman, “The dielectric constant of a composite material - a problem in classical physics,” Phys. Rep. 43, 377–407 (1978). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited